Analysis of Everyday Sounds

Dan Ellis and Keansub Lee

Laboratory for Recognition and Organization of Speech and Audio
Dept. Electrical Eng., Columbia Univ., NY USA
dpwe@ee.columbia.edu

1. Personal and Consumer Audio
2. Segmenting & Clustering
3. Special-Purpose Detectors
4. Generic Concept Detectors
5. Challenges & Future
LabROSA Overview

- Information Extraction
- Environment
- Recognition
- Separation
- Retrieval
- Signal Processing
- Speech
- Machine Learning
- Music
1. Personal Audio Archives

- Easy to record *everything* you hear
 - <2GB / week @ 64 kbps

- Hard to *find anything*
 - how to scan?
 - how to visualize?
 - how to index?

- Need *automatic analysis*

- Need *minimal impact*
Personal Audio Applications

• **Automatic appointment-book history**
 - fills in when & where of movements

• **“Life statistics”**
 - how long did I spend in meetings this week?
 - most frequent conversations
 - favorite phrases?

• **Retrieving details**
 - what exactly did I promise?
 - privacy issues...

• **Nostalgia**

• **... or what?**
Consumer Video

• Short video clips as the evolution of snapshots
 ○ 10-60 sec, one location, no editing
 ○ browsing?

• More information for indexing...
 ○ video + audio
 ○ foreground + background
Information in Audio

• Environmental recordings contain info on:
 • location – type (restaurant, street, ...) and specific
 • activity – talking, walking, typing
 • people – generic (2 males), specific (Chuck & John)
 • spoken content ... maybe

• but not:
 • what people and things “looked like”
 • day/night ...
 • ... except when correlated with audible features
Environmental sound classification draws on earlier sound classification work as well as source separation...

A Brief History of Audio Processing

- Speech Recognition
 - Speaker ID
 - Music Audio Genre & Artist ID
 - GMM-HMMs
 - Soundtrack & Environmental Recognition
- Source Separation
 - One channel
 - Model-based
 - Cue-based
 - Multi-channel

Analysis of Everyday Sounds - Ellis & Lee

2007-07-24 p. 7/35
2. Segmentation & Clustering

• Top-level structure for long recordings:
 Where are the **major boundaries**?
 • e.g. for diary application
 • support for manual browsing

• **Length of fundamental time-frame**
 • 60s rather than 10ms?
 • **background** more important than foreground
 • average out uncharacteristic **transients**

• **Perceptually-motivated features**
 • .. so results have perceptual relevance
 • broad spectrum + some detail
MFCC Features

- Need “timbral” features: Mel-Frequency Cepstral Coeffs (MFCCs)
 - auditory-like frequency warping
 - log-domain
 - discrete cosine transform = orthogonalization
Long-Duration Features

- Capture both **average** and **variation**
- Capture a little more **detail** in subbands...
• Auditory spectrum:

\[A[n, j] = \sum_{k=0}^{N_F} w_{jk}X[n, k] \]

• Spectral entropy \(\approx \) ‘peakiness’ of each band:

\[H[n, j] = - \sum_{k=0}^{N_F} \frac{w_{jk}X[n, k]}{A[n, j]} \cdot \log \left(\frac{w_{jk}X[n, k]}{A[n, j]} \right) \]
BIC Segmentation

- **BIC (Bayesian Info. Crit.)** compares models:

\[
\log \frac{L(X_1; M_1) L(X_2; M_2)}{L(X; M_0)} \geq \frac{\lambda}{2} \log(N) \Delta \#(M)
\]
BIC Segmentation Results

- **Evaluate**: 62 hr hand-marked dataset
 - 8 days, 139 segments, 16 categories
 - measure Correct Accept % @ False Accept = 2%:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Correct Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{dB}</td>
<td>80.8%</td>
</tr>
<tr>
<td>μ_H</td>
<td>81.1%</td>
</tr>
<tr>
<td>σ_H/μ_H</td>
<td>81.6%</td>
</tr>
<tr>
<td>$\mu_{dB} + \sigma_H/\mu_H$</td>
<td>84.0%</td>
</tr>
<tr>
<td>$\mu_{dB} + \sigma_H/\mu_H + \mu_H$</td>
<td>83.6%</td>
</tr>
<tr>
<td>mfcc</td>
<td>73.6%</td>
</tr>
</tbody>
</table>

![Graph showing sensitivity and specificity metrics for different features](image-url)
Segment Clustering

- Daily activity has lots of repetition: Automatically cluster similar segments
 - ‘affinity’ of segments as KL2 distances
Spectral Clustering

- **Eigenanalysis** of affinity matrix: \(A = U \cdot S \cdot V' \)

 - Eigenvectors \(v_k \) give cluster memberships

 - Number of clusters?

 ![Affinity Matrix](image)

 ![SVD components: \(u_k \cdot s_{kk} \cdot v_k' \)](image)
Clustering Results

• Clustering of automatic segments gives ‘anonymous classes’
 • BIC criterion to choose number of clusters
 • make best correspondence to 16 GT clusters

• Frame-level scoring gives ~70% correct
 • errors when same ‘place’ has multiple ambiences
Browsing Interface

- **Browsing / Diary interface**
 - links to other information (diary, email, photos)
 - synchronize with note taking? (Stifelman & Arons)
 - audio thumbnails

- **Release Tools** + “how to” for capture
3. Special-Purpose Detectors: Speech

• **Speech** emerges as most interesting content

• **Just identifying** speech would be useful
 - goal is speaker identification / labeling

• **Lots of background** noise
 - conventional Voice Activity Detection inadequate

• **Insight:** Listeners detect **pitch track** (melody)
 - look for **voice-like** periodicity in noise
Voice Periodicity Enhancement

- Noise-robust subband autocorrelation

- Subtract local average
 - suppresses steady background e.g. machine noise

- 15 min test set; 88% acc (no suppression: 79%)
- also for enhancing speech by harmonic filtering
Detecting Repeating Events

• **Recurring sound events can be informative**
 - indicate similar circumstance...
 - but: define “event” – sound organization
 - define “recurring event” – how similar?
 - .. and how to find them – tractable?

• **Idea: Use hashing (fingerprints)**
 - index points to other occurrences of each hash;
 - intersection of hashes points to match
 - much quicker search
 - use a fingerprint insensitive to background?
Shazam Fingerprints

• Prominent spectral onsets are landmarks;
 Use relations \(\{f_1, f_2, \Delta t\} \) as hashes

○ intrinsically robust to background noise
Exhaustive Search for Repeats

- More selective hashes →
 - few hits required to confirm match (faster; better precision)
 - but less robust to background (reduce recall)

- Works well when exact structure repeats
 - recorded music, electronic alerts
 - no good for "organic" sounds e.g. garage door

Analysis of Everyday Sounds - Ellis & Lee 2007-07-24 p. 22/35
Music Detector

Two characteristic features for music
- strong, sustained periodicity (notes)
- clear, rhythmic repetition (beat)
- at least one should be present!

Noise-robust pitch detector
- looks for high-order autocorrelation

Beat tracker
- .. from Music IR work
4. **Generic Concept Detectors**

- **Consumer Video** application: How to assist **browsing**?
 - system automatically tags recordings
 - tags chosen by **usefulness**, **feasibility**

- **Initial set of 25 tags** defined:
 - “animal”, “baby”, “cheer”, “dancing” ...
 - **human annotation** of 1300+ videos
 - evaluate by **average precision**

- **Multimodal** detection
 - separate audio + visual low-level detectors
 - (then **fused**...)
MFCC Covariance Representation

- **Each clip/segment** → **fixed-size statistics**
 - similar to speaker ID and music genre classification
- **Full Covariance matrix of MFCCs**
 - maps the kinds of **spectral shapes** present

- **Clip-to-clip distances** for SVM classifier
 - by KL or 2nd Gaussian model
GMM Histogram Representation

- Want a more ‘discrete’ description
 - .. to accommodate nonuniformity in MFCC space
 - .. to enable other kinds of models...
- Divide up feature space with a single Gaussian Mixture Model
 - .. then represent each clip by the components used
Latent Semantic Analysis (LSA)

- Probabilistic LSA (pLSA) models each histogram as a mixture of several ‘topics’
 - .. each clip may have several things going on
- Topic sets optimized through EM
 - \(p(ftr \mid clip) = \sum_{topics} p(ftr \mid topic) p(topic \mid clip) \)

- use \(p(topic \mid clip) \) as per-clip features
• Wide range of results:
 - audio (music, ski) vs. non-audio (group, night)
 - large AP uncertainty on infrequent classes
How does it ‘feel’?

• Browser impressions: How wrong is wrong?

Top 8 hits for “Baby”
Confusion analysis

Where are the errors coming from?
Fused Results - AV Joint Boosting

- Audio helps in many classes
5. Future: Temporal Focus

- **Global vs. local class models**
 - tell-tale acoustics may be ‘washed out’ in statistics
 - try iterative realignment of HMMs:

```
YT baby 002:
  voice
  baby
  laugh

Old Way:
All frames contribute

New Way:
Limited temporal extents
```

- “background” (bg) model shared by all clips
Handling Sound Mixtures

- MFCCs of mixtures ≠ mix of MFCCs
 - recognition despite widely varying background?
 - factorial models / Nonnegative Matrix Factorization
 - sinusoidal / landmark techniques

Handling Sound Mixtures

- MFCCs of mixtures ≠ mix of MFCCs
 - recognition despite widely varying background?
 - factorial models / Nonnegative Matrix Factorization
 - sinusoidal / landmark techniques
Larger Datasets

• Many detectors are visibly data-limited
 ○ getting data is ~ hard
 ○ labeling data is expensive

• Bootstrap from YouTube etc.
 ○ lots of web video is edited/dubbed...
 - need a “consumer video” detector?

• Preliminary YouTube results disappointing
 ○ downloaded data needed extensive clean-up
 ○ models did not match Kodak data

• (Freely available data!)
Conclusions

- **Environmental sound contains** information
 - .. that’s why we hear!
 - .. computers can hear it too

- **Personal audio** can be segmented, clustered
 - find specific sounds to help navigation/retrieval

- **Consumer video** can be ‘tagged’
 - .. even in unpromising cases
 - audio is complementary to video

- **Interesting directions for** better models