Deep Clustering: Discriminative embeddings for segmentation and separation

John Hershey
Zhuo Chen
Jonathan Le Roux
Shinji Watanabe
Problem to solve: general audio separation

- Goal: Analyze complex audio scene into its components
 - Different sound may be overlapping and partially obscure each other
 - Number of sound may be unknown
 - Sound types may be known or unknown
 - Multiple instances of a particular type may be present

- Many potential applications
 - Use separated components: enhancement, remix, karaoke, etc.
 - Recognition & detection: speech recognition, surveillance, etc.
 - Robots
 - robots need to handle the “cocktail-party problem”
 - need to be aware of sound in environment
 - no easy sensor-based solution for robots (e.g., close talking microphone)
 - humans can do this amazingly well

- More important goal: understand how human brain work
Why is general audio separation difficult?

- Incredible variety of sound types
 - Human voice: speech, singing...
 - Music: many kinds of instruments (strings, woodwind, percussion)
 - Natural sound: animals, environmental...
 - Man-made sounds: mechanical, sirens...
 - Countless unseen novel sounds

- The “modeling problem”
 - Difficult to make models for each type of sound
 - Difficult to make one big model that applies to any sound type
 - Sounds obscure each other in a state dependent way
 - Which sound dominates a particular part of the spectrum depends on the states of all sounds.
 - Knowing which sound dominates makes it easy to determine states
 - Knowing the states makes it easy to determine which sound dominates
 - Chicken and egg problem: the joint problem is intractable!
Previous attempts

• CASA (1990s~early 2000s)
 – Segment spectrogram based on Gestalt “grouping cues”
 – Usually no explicit model of the sources
 – Advantage: potentially flexible generalization
 – Disadvantage: rule based, difficult to model “top-down” constraints.

• Model based systems (early 2000s ~ now)
 – Examples: non-negative matrix factorization, factorial hidden Markov models
 – Model assumptions hardly ever match data
 – Inference is intractable, difficult to discriminatively train

• Neural networks
 – Work well for known target source type, but difficult to apply to many types
 – Problem of structuring the output labels in the case of multiple instances of the same type
 – Unclear how to handle novel sound types or classes. No instances seen during training
 – Some special type of adaptation is needed
Model-based Source Separation

Signal Models

Interaction Models

He held his arms close to...

Inference

Predictions

Data

$p(y_{f,n} = 0 | v_{f,n}^a, v_{f,n}^b)$
Problems of generative model

- Trade-offs between speed and accuracy
- Limitation to separate similar classes
- More broadly, no way the brain is doing like this
Neural network works well for some tasks in source separation

- State-of-the-art performance in across-type separation
 - Speech enhancement: Speech vs. Noise
 - Singing music separation: Singing vs. Music

- Auto-encoder style Objective function: \(L = \sum \|H_{f,t} - F(Y_{f,t})\|^2 \)
However,

- Limitation in scaling up for multiple sources
 - When more than two sources, which target to use?
 - How to deal with unknown number of sources?

- Output permutation problem
 - When the sources are similar
 - e.g. when separating mixture of speech from two speakers, all parts are speech, then which slot should identify which speaker?
Separating mixed speakers—a slightly harder problem

• Mixture of speech from two speakers
 – Sources have similar characteristics
 – Interested in all sources
 – Simplest example of a cocktail party problem

• Investigated several ways of training neural network
 On small chunks of signal:
 – Use oracle permutation as clue
 • Train the network by back-propagating difference with best-matching speaker
 – Use strongest amplitude as clue
 • Train the network to separate the strongest source
The neural network failed to separate speakers

Input mixture

Oracle output

DNN output
Clustering Approaches to Separation

- Clustering approaches handle the permutation problem

- CASA approaches cluster based on hand-crafted similarity features:
 - Proximity in time, frequency
 - Common amplitude modulation
 - Common frequency modulation
 - Harmonicity using pitch tracking
 - Spectral clustering was used to combine CASA features via multiple kernel learning
 - Catch-22 with features: whole patch of context needed, but this overlaps multiple sources
From class-based to partition-based objective

• Class-based objective: estimate the class of an object
 – Learn from training class labels
 – Need to know object class labels
 – Supervised model
 – E.g.:
 \[C(\theta) = |V - Y|^2_F \]

• Partition-based objective: estimate what belongs together
 – Learn from labels of partitions
 – No need to know object class labels
 – Semi-supervised model
 – E.g.:
 \[C(\theta) = \sum_{Y_j = Y_i} |V_i - V_j|^2_F \]
Learning the affinity

- One could thus think of directly estimating affinities using some model:
 \[\hat{A}_i = g_\theta(X_i) \]
- For example, by minimizing the objective:
 \[\mathcal{L}(\theta) = |A - \hat{A}|_F^2 \]
- But, affinity matrices are large
- Factoring them can be time consuming with complexity \(\mathcal{O}(N^3) \)
- Current speedup methods for spectral clustering such as Nyström method use low-rank approximation to \(\hat{A}_i \)
- If the rank of the approximation is \(K < N \), then we can compute the eigenvectors of \(\hat{A}_i \) in \(\mathcal{O}(K^2N) \) -- Much faster!
Learning the affinity

• Instead of approximating a high-rank affinity matrix, we train the model to produce a low-rank one, by construction:

\[\hat{A} = V V^T \]

where we estimate \(V_i = h_\theta(X_i) \), a \(K \)-dimensional embedding

• We propose to use deep networks
 – Deep networks have recently made amazing advances in speech recognition
 – Offer a very flexible way of learning good intermediate representations
 – Can be trained straightforwardly using stochastic gradient descent on
Affinity-based objective function

\[C(\theta) = \|VV^T - YY^T\|_F^2 = \sum_{i,j:y_i=y_j} (\langle v_i, v_j \rangle - 1)^2 + \sum_{i,j:y_i \neq y_j} (\langle v_i, v_j \rangle - 0)^2, \]

\[= \sum_{i,j:y_i=y_j} |v_i - v_j|^2 + \sum_{i,j} \frac{1}{4} (|v_i - v_j|^2 - 2)^2, \]

\[s.t \quad \sum_k |v_{i,k}|^2 = 1, \quad \forall i \]

where:

- \(V \in \mathcal{R}^{N \times K} \): the output of the network, K-dimensional embedding for each time-frequency bin.

- \(Y \in \mathcal{R}^{N \times C} \): the class indicator vector for each time-frequency bin.

- High-dimensional embedding
- First term directly related with K-means objective
- Second term “spreads” all the data points from each other
Avoiding the N x N affinity matrix

- The number of samples N is orders of magnitude larger than the embedding dimension K
 - e.g., for a 10s audio clip, N=129000 T-F bins (256 fft, 10ms hop)
 Affinity matrix has 17 billion entries!

- Low rank structure of VV^\top can avoid saving full affinity matrix
 - When computing the objective function:
 \[
 C = |VV^T - YY^T|^2_F = |V^T V|^2_F - 2|V^T Y|^2_F + |Y^T Y|^2_F
 \]
 - When computing the derivative:
 \[
 \frac{\partial C}{\partial V^T} = 4V (V^T V) - 4Y (Y^T V)
 \]
Evaluation on speaker separation task

• Network
 – Two BLSTM layers neural network with various layer sizes

• Data
 – Training data
 • 30 h of mixtures of 2 speakers randomly sampled from 103 speakers in WSJ dataset
 • Mixing SNR from -5dB to 5dB
 – Evaluation data
 • Closed speaker set: 10 h of mixtures of other speech from the same 103 speakers
 • Open speaker set: 5 h of mixtures from 16 other speakers

• Baseline methods
 – Closed speaker experiments: Oracle dictionary NMF
 – CASA
 – BLSTM auto encoder with different permutation strategies
Significantly better than the baseline

Table 1: SDR improvements (dB) for different separation methods

<table>
<thead>
<tr>
<th>method</th>
<th>CC</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>oracle NMF</td>
<td>5.1</td>
<td>-</td>
</tr>
<tr>
<td>CASA</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>DC oracle k-means</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>DC global k-means</td>
<td>5.9</td>
<td>5.8</td>
</tr>
<tr>
<td>BLSTM stronger</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>BLSTM permute</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>BLSTM permute*</td>
<td>1.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 2: SDR improvements (dB) for different embedding dimensions K and activation functions

<table>
<thead>
<tr>
<th>model</th>
<th>CC oracle</th>
<th>DC global</th>
<th>CC oracle</th>
<th>DC global</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = 5$</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-0.7</td>
<td>-1.1</td>
</tr>
<tr>
<td>$K = 10$</td>
<td>5.2</td>
<td>4.5</td>
<td>5.3</td>
<td>4.6</td>
</tr>
<tr>
<td>$K = 20$</td>
<td>6.3</td>
<td>5.6</td>
<td>6.4</td>
<td>5.7</td>
</tr>
<tr>
<td>$K = 40$</td>
<td>6.5</td>
<td>5.9</td>
<td>6.5</td>
<td>5.8</td>
</tr>
<tr>
<td>$K = 60$</td>
<td>6.0</td>
<td>5.2</td>
<td>6.1</td>
<td>5.3</td>
</tr>
<tr>
<td>$K = 40$ logistic</td>
<td>6.6</td>
<td>5.9</td>
<td>6.6</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Audio example

- Different gender mixture
 Oracle NMF results Deep clustering result

- Same gender mixture
 Oracle NMF results Deep clustering results
The same net works on three speakers mixtures

- The network was trained with two speaker mixtures only!
Separation three-speaker mixture

- **Data**
 - **Training data**
 - 10 h of mixtures of 3 certain speakers sampled from WSJ dataset
 - Mixing SNR from -5dB to 5dB
 - **Evaluation data**
 - 4 h of mixtures of other speech from the same speakers

Table 3: SDR improvement (dB) for mixtures of three speakers. Left: three-speaker separation using DC network trained on two-speaker mixtures. Right: separation of three known speakers.

<table>
<thead>
<tr>
<th>method</th>
<th>MS-CC</th>
<th>MS-OC</th>
<th>method</th>
<th>3S-CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>oracle NMF</td>
<td>4.4</td>
<td>-</td>
<td>oracle NMF</td>
<td>4.5</td>
</tr>
<tr>
<td>DC oracle</td>
<td>3.5</td>
<td>2.8</td>
<td>DC oracle</td>
<td>7.0</td>
</tr>
<tr>
<td>DC global</td>
<td>2.7</td>
<td>2.2</td>
<td>DC global</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BLSTM stack</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Single speaker separation

• **Data**
 - **Training data**
 - 10 h of mixtures of one speaker sampled from 103 speakers in WSJ dataset
 - Adapted data: 10 h of one certain speaker
 - Mixing SNR from -5dB to 5dB

 - **Evaluation data**
 - Closed speaker: 5 h of mixtures of other speech from the same 103 speaker
 - Closed speaker: 3 h of mixtures of other 16 speaker
 - Adapted data: 10 h of other speech of one certain speaker

<table>
<thead>
<tr>
<th>Table 2: SDR improvements (dB) for female mixtures</th>
<th>Table 3: SDR improvements (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>method</td>
</tr>
<tr>
<td>DC oracle k-means</td>
<td>DC oracle k-means</td>
</tr>
<tr>
<td>DC global k-means</td>
<td>DC global k-means</td>
</tr>
<tr>
<td>Adapted DC oracle k-means</td>
<td>Adapted DC oracle k-means</td>
</tr>
<tr>
<td>Adapted DC global k-means</td>
<td>Adapted DC global k-means</td>
</tr>
<tr>
<td>fvf trained DC oracle k-means</td>
<td>fvf trained DC oracle k-means</td>
</tr>
<tr>
<td>fvf trained DC global k-means</td>
<td>fvf trained DC global k-means</td>
</tr>
<tr>
<td>Adapted fvf trained DC oracle k-means</td>
<td>Adapted fvf trained DC oracle k-means</td>
</tr>
<tr>
<td>Adapted fvf trained DC global k-means</td>
<td>Adapted fvf trained DC global k-means</td>
</tr>
<tr>
<td>Certain spk DC oracle k-means</td>
<td>Certain spk DC oracle k-means</td>
</tr>
<tr>
<td>Certain spk DC global k-means</td>
<td>Certain spk DC global k-means</td>
</tr>
</tbody>
</table>

male **female**

mixed

source 1 **source 2**
Possible extensions

• Different network options
 – Convolutional architecture
 – Multi-task learning
 – Different pre-training

• Joint training through the clustering
 – Combining with deep unfolding
 – Compute gradient through the spectral clustering

• Different tasks
 – General audio separation
Thanks a lot!