USING INSTRUMENT RECOGNITION TO EXTRACT MELODIES FROM COMPLEX AUDIO

INTRODUCTION

- **Aim:** Identify the solo instrument in accompanied sonatas and concertos.
- **Use this knowledge to extract the melody line.**
- **Useful for:** Automatic music information retrieval, e.g., transcription, ‘query-by-humming’ systems, automatic indexing and analysis.

OVERVIEW

- Instrument recognition and melody extraction without placing any restrictions on the background by focusing on the spectral peaks of the harmonic series of the target tones.
- Melody estimation based on multiple F0 candidates.
- Observation likelihoods for F0 candidates estimated using Gaussian classifiers trained on the F0s of music with known melody lines.
- Different features for observation likelihood of F0 candidates:
 - **Explicit:** absolute frequency + strength + instrument recognition likelihood.
 - **Implicit:** frequency and power of individual partials.
- Transition probabilities, i.e., frame-based interval likelihoods, estimated from the same training material.
- Viterbi search for most likely melody line based on normalised and scaled observation likelihood and transition probabilities.

RESULTS

- 5 different solo instruments: flute, clarinet, oboe, violin, cello.
- Accompaniment: piano, cembalo, or orchestra.
- All examples from commercially available classical CDs.

INSTRUMENT RECOGNITION

- 90 different examples, no knowledge about true F0s, accuracy for instrument recognition per piece: 86% (as good as other systems designed to work with monophonic music only).
- 20 examples, 1 minute each manually labeled F0s, 51% of individual frames correct, 95% when pooled and averaged per example.

MELODY EXTRACTION

- No pruning, every F0 on a half tone scale between C2 (65 Hz) and C7 (2093 Hz) considered, 61 F0 candidates per frame.
- For observation likelihood implicit features based on frequency and power of spectral peaks outperformed explicit coding of frequency + strength + instrument likelihood, despite using only 3 pieces for training.
- Observation likelihood and transition probabilities normalised to have the same mean and standard deviation, for best results influence of observation likelihood strengthened (to the power of 4).
- Instrument specific observation likelihoods outperformed those trained on examples from all solo instruments → initial instrument recognition is important!
- Most common error: octave doublings of longer sections played in the lower range of the solo instrument.
- Number of frames with correct F0, cross validation for 20 examples of 1 minute each: strongest F0: 45% | observation likelihood: 60% | observation likelihood + transitions: 70%

MELODY TONE MODELS

- Exploit features:
 - GMMS trained on absolute frequency of F0 + F0 strength + instrument likelihood (used for initial instrument recognition).
 - Numerous training examples for instrument recognition.
 - Implicit features:
 - GMMS trained on frequency position and power of every partial of current F0 candidate.
 - Similar to features used for instrument recognition, but power once normalised to highest value within the harmonic series and once to highest value within the current frame (to code relative strength of F0 candidate).
 - Only 3 training pieces with the same solo instrument.

TRANSITION PROBABILITIES

- Interval transitions on a frame-to-frame basis.
- Very high probability to stay on same F0, otherwise slightly favouring small intervals of half and full tones, thirds and fifths.

TRAINING MATERIAL

- CD recordings of accompanied solo instrument with manually labeled F0s.
- Using only pieces with the same solo instrument as the test file.

ACKNOWLEDGEMENTS

Jana Eggink acknowledges the financial support provided through the European Community’s Human Potential Programme under contract HPRN-CT-2002-00276, HOARSE. Guy J. Brown is supported by EPSRC grant GR/R47400/01.