Speech separation: human single-channel and spatial performance

A.W. Bronkhorst

TNO Human Factors, The Netherlands
<table>
<thead>
<tr>
<th>Human speech separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing impairment</td>
</tr>
<tr>
<td>(Plomp, Pavlovic)</td>
</tr>
<tr>
<td>Dip listening</td>
</tr>
<tr>
<td>(Festen)</td>
</tr>
<tr>
<td>Contextual information</td>
</tr>
<tr>
<td>(Boothroyd, Bronkhorst)</td>
</tr>
<tr>
<td>Talker characteristics</td>
</tr>
<tr>
<td>(Florentine & Buus, Bradlow, van Wijngaarden)</td>
</tr>
<tr>
<td>Segregation, streaming</td>
</tr>
<tr>
<td>(Bregman, Darwin, Brokx & Nooteboom)</td>
</tr>
<tr>
<td>Informational masking</td>
</tr>
<tr>
<td>(Carhart, Kidd, Brungart, Freyman)</td>
</tr>
<tr>
<td>Room acoustics</td>
</tr>
<tr>
<td>(Houtgast & Steeneken)</td>
</tr>
<tr>
<td>Binaural unmasking</td>
</tr>
<tr>
<td>(Licklider, Levitt & Rabiner)</td>
</tr>
<tr>
<td>Attentional resources</td>
</tr>
<tr>
<td>(Cherry, Broadbent, Treisman)</td>
</tr>
</tbody>
</table>

Speech separation workshop, Montreal
Outline

• How can factors be modeled?
 ➤ *Prediction of speech intelligibility, often no useful for machine separation*

• Single-channel speech separation
 ➤ *Type of interference*
 ➤ *Energetic vs. informational masking*
 ➤ *Reverberation, talker characteristics*

• Spatial performance
 ➤ *Single source*
 ➤ *Multiple sources*
 ➤ *Informational masking*

• Conclusion
Single-channel speech separation (1)

• Interference is noise
 ➤ *Old line of research, resulted in Articulation index*
 – Contribution in frequency band is proportional to SNR
 – Frequency bands can be combined in weighted sum
 • depends on speech material
 – *Nonlinear relationship between AI and % correct*
 • depends on speech material (e.g. contextual information)
 ➤ *Recent developments*
 – Prediction for low-bitrate channels (PESQ, Beerends, $$$)
 – Improvement of prediction for non-smooth noise spectra
 • Modified STI (Steeneken); Speech Recognition Sensitivity (SRS) model of Müsch & Buus
 – Modeling of context effects
 • SRS model, context model of Bronkhorst et al.
Single-channel speech separation (2)

- Interference is speech(like)
 - *Strong effect of type of masker*
 - noise/voice
 - same/different sex
 - *Interaction with number of maskers*

![Graph showing gain re:steady-state masker vs. number of voices](image)
Single-channel speech separation (3)

- **Energetic vs. informational masking**
 - *Energetic masking*
 - Occurs during encoding, cannot be resolved by an “ideal” listener
 - Can be modeled using current knowledge of auditory system
 - problem: dip listening / contextual information
 - *Informational masking*
 - “The rest”
 - stimulus and/or masker uncertainty
 - at different processing levels (phonetic, semantic)
 - Occurs only when target and interferer are similar
 - studies use very specific material
 - Large inter-individual differences, effects of training and a-priori information
 - Shallow psychometric functions
 - Difficult to model
Single-channel speech separation (4)

• Other factors
 ➤ Reverberation
 – Can be adequately modeled by STI
 • treatment of frequency domain similar to AI
 • Modulation Transfer Function (MTF) integrates effects of noise and reverberation

 ➤ Talker characteristics
 – Effects are difficult to model
 – Speech perception in noise (SRT) can be used as measure of talker proficiency
 – Can be incorporated in STI (van Wijngaarden et al., 2004)
Spatial performance (1)

- Single noise source
 - Combination of best-ear (ILD) and binaural (ITD) listening
 - Can be modeled quite well (vom Hövel, 1984; Zurek, 1990)
 - Strong effect of acoustic environment
Spatial performance (2)

- Multiple noise sources
 - Binaural gain generally decreases, depending on source configuration
 - Modeling: extended single-source model

- Multiple speech(like) sources
 - Same effects as in single-channel case
 - dip listening
 - strong influence of type of interferer
 - Indication that binaural release is largest for 2-3 interferers (Hawley et al., 2004)

Simple descriptive model
(Bronkhorst, 2000)

\[R = \alpha \left(1 - \frac{1}{N} \sum_{i=0}^{N} \cos \theta_i \right) + \beta \frac{1}{N} \left| \sum_{i=0}^{N} \sin \theta_i \right| \]

\[\alpha = 1.4; \beta = 8 \]
Spatial performance (3)

- **Informational masking**
 - *Spatial release from masking*
 - Can be much larger than the release for energetic masking (Arbogast et al., 2002)
 - Can occur in conditions where there is no release from energetic masking
 - due to a difference in perceived location (Freyman et al., 1999, 2001, 2004)
 - *Limited attentional resources*
 - Demonstrated in “classical” shadowing experiments (e.g. Wood & Cowan, 1995)
 - Large effect of contralateral distracter in CRM task (Brungart & Simpson, 2002)
 - Better monaural than binaural performance in speaker recognition task (Drullman & Bronkhorst, 2000)
Conclusion

- Dip listening (Festen)
- Masking (Miller, French & Steinberg)
- Room acoustics (Houtgast & Steeneken)
- Binaural unmasking (Licklider, Levitt & Rabiner)
- CP effect (Cherry, Carhart)
- Contextual information (Boothroyd, Bronkhorst)
- Talker characteristics (Florentine & Buus, Bradlow, van Wijngaarden)
- Segregation, streaming (Bregman, Darwin, Brokx & Nootboom)
- Informational masking (Carhart, Kidd, Brungart, Freyman)
- Attentional resources (Cherry, Broadbent, Treisman)
- Good progress
- Difficult
- No problem for machines