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Abstract

We propose an Auditory VOCODER to resynthesize sound

from the Auditory Mellin Image which is an auditory

representation that segregates the size and shape

information of incoming sound.  The sound resynthesis

part consists of three techniques: the STRAIGHT

VOCODER [2], frequency-warping cepstral analysis [4,12],

and nonlinear multivariate regression analysis (MRA). We

explain these methods and the evaluation of the system.

The initial listening tests indicate that the sound quality

is reasonable. The auditory components enhance the noise

suppression and stream segregation performance during

speech processing.

1. Introduction
Analysis/synthesis schemes originated with the

VOCODER [1] are an essential tool in speech signal

processing. They were extended with linear predict coding

(LPC) and are now successfully used in mobile phone

systems. Recently, the VOCODER has been renovated to

improve sound quality enormously using STRAIGHT [2].

Although originally based on spectral analysis within the

linear frequency domain, a mel log-spectral approximation

filter (MLSA) [4] was developed to resynthesize sound

from mel-frequency cepstral coefficients (MFCC) within

the VOCODER framework.

The success of MFCC in automatic speech recognition

(ASR) [3] is often attributed to its auditory origins, but the

cepstral calculation following the mel-spectral analysis i s

difficult to justify in terms of realistic auditory processing.

Moreover, the averaging process, or windowing, for the

mel-spectral calculation removes phase information that

human listeners hear [5]. The purpose of this project was to

develop a method to resynthesize sounds from an auditory

representation that better accounts for the human

perception.

The auditory model is an analysis model by its nature

and there have been few studies that consider sound

resynthesis. Perhaps, the simplest systems are a wavelet

transform and the linear filterbank on a Mel, Bark, or ERB

scale. The sounds can be resynthesized from the output of

the filterbank when all of the magnitude and phase

information is preserved. Sound resynthesis from

nonlinear, level-dependent output has also been achieved

using the gammachirp auditory filterbank [6,7]. An

iterative method has also been developed to resynthesize

sound from an auto-correlation representation computed

after auditory spectral analysis [8]. The resynthesized

sound, however, is not unique to the auditory

representation because of local minima in the iterative

process. These resynthesis methods are, however, limited in

the flexibility of modification provided by the VOCODER,

including F0 conversion.

In this paper, we propose an "Auditory VOCODER" to

resynthesize sound from an auditory representation

referred to as the Mellin Image [9,10] using STRAIGHT [2].

Section 2 explains the system architecture and the signal

processing applied by each module. Section 3 presents the

results.

2. System architecture and processing
The system (Figure 1) consists of STRAIGHT, an

Auditory Mellin Image, and a mapping block to link them

together.

2.1. STRAIGHT
STRAIGHT [2] is fundamentally a VOCODER that

consists of analysis and synthesis parts. During the

analysis, the fundamental frequency (F0) is accurately

estimated to smooth out the periodic bouncing in the

short-term spectrum using an F0-adaptive filter. So, the

STRAIGHT spectrum is basically an F0-independent

representation. During the synthesis,  pulses or noise with

a flat spectrum are generated in accordance with voicing

information and the F0. The sounds are resynthesized from

the smoothed spectrum and the pulse/noise component

using an inverse FFT with the overlap-add technique. For

resynthesis from the Mellin Image, the smoothed spectrum

is introduced into the system of the mapping block and

then it is recovered as described in Subsection 2.3.

2.2. Auditory Mellin Image Model
The auditory model used to produce the Mellin Image

[9,10] performs its spectral analysis with a gammatone

filterbank on the ERB scale. The output is logarithmically

compressed and adaptive thresholding is applied to

produce a Neural Activity Pattern (NAP). The NAP is then

converted into a Stabilized Auditory Image (SAI) using

Strobed Temporal Integration (STI) [11].  The vertical axis

of the SAI is ERB frequency; the horizontal axis is ’time-

interval from the strobe point’. One fundamental period

(1/F0) of the Auditory Image is extracted to remove the F0

information. This ’Auditory Figure’ is converted into a

Size-Shape Image (SSI) which has the same vertical axis

(ERB frequency), but the horizontal axis, h, is now the

product of Time-Interval and Peak-Frequency. The Mellin

Image (MI) is derived using spatial frequency

decomposition (or equivalently, cepstral decomposition)

with complex sinusoids applied along each line of

constant h in the SSI. As a result, the vertical axis of the

MI corresponds to cepstral order; the horizontal axis

remains the time-interval/peak-frequency product, h
[9,10].

The vertical profile of the MI is similar to a vector of

mel-frequency cepstral coefficients (MFCC) derived from
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the one-dimensional mel-spectrum; however, the MI i s

largely F0-independent whereas MFCC is F0-dependent.

2.3. Mapping block

2.3.1. Warped frequency DCT
We developed a mapping function between the Mellin

Image and the STRAIGHT spectrum; both are basically F0-

independent representations. The logarithmic magnitude

of the STRAIGHT spectrum is converted into a cepstral

representation by a warped-frequency version of the

Discrete Cosine Transform (DCT)  defined as
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The real part of the frequency response of this filter,

Re[ ( )]Ψ
m

ω , is a normalized orthogonal function when

{ | }ω ω π0 ≤ ≤ .  α  is a coefficient which determines the

degree of frequency warping [12] which is

 ˜ arctan{ sin /( cos )}ω ω α ω α ω= + −2 1 .              (2)

When α  is zero, Re[ ( )] cos( )Ψ
m

mω ω= , i.e., it is a discrete

cosine. When α  is between 0 and 1, Re[ ( )]Ψ
m

ω  corresponds

to a cosine component defined on the warped frequency,

ω̃, with a weighting function to maintain the

orthogonality. So, Re[ ( )]Ψ
m

ω  is used as a kernel function

for a warped-frequency version of the DCT (warped-DCT).

When the sampling frequency is 12 kHz, the warped

frequency, ω̃, is close to the ERB scale when α = 0 56. .

 The warped-DCT coefficients are calculated from the

smoothed, log-magnitude spectrum of STRAIGHT. A

simple warped-DCT decomposition and recomposition of

the STRAIGHT spectrum does not affect the sound quality

appreciably when the maximum order, m , is 30.

2.3.2. Arrangement of the mapping function
The MI is two-dimensional image produced every ten

ms, or so, whereas the vector of warped-DCT coefficients

has the same frame rate as the STRAIGHT spectrum (1 ms

in this case). As noted above, the vertical axis of the MI

corresponds to cepstral order. Since the spatial frequency,

c /( )2π , is defined as cycles within the range of the ERB

scale between 100 and 6000 Hz [9,10], a c /( )2π  value of

m / 2corresponds roughly to the m th order of the warped-

DCT coefficients. Figure 2 shows the arrangement of the

mapping function between the MI ( c /( )2π  value of m / 2)

and the warped-DCT coefficients ( m th order). The

following mapping procedure is described for one

arbitrary value of m  and is repeated for  all m  values

between 0 and 30.

The MI is produced by a highly non-linear process:

log-compression and adaptive thresholding in the NAP,

and non-linear temporal integration with Strobed

Temporal Integration (STI). The STRAIGHT spectrum is

also nonlinear albeit to a lesser degree. So, nonlinear

Multivariate Regression Analysis (MRA) was introduced

to accommodate the difference in the number of

coefficients and the nonlinearities.

Although it is possible to define nonlinear MRA in

various ways, we prefer a nonlinear MRA without any

iterative calculation for computational efficiency.

Moreover, the problems of local-minima and over-learning

inherent in iterative learning can be avoided. A method

developed for nonlinear Auto-Regressive (AR) analysis

[13] was modified to produce the nonlinear MRA since the

mathematical formulation is quite similar. This nonlinear

MRA also accommodates the linear case in its formulation.

The explanation variable of the MRA is the m / 2th

vector of the first, and successive MI’s, extracted every 10

ms. We set the vector to be   x1 11 12 1
={ , , , }x x x

p
...  for the first

MI. The dependent, or response, variable is the average

value for 5 ms of the m th warped-DCT coefficients. The

coefficients for every 1 ms are then recovered afterwards

using interpolation. We set the response variable to be

 y ={ , , , }y y yq1 2 ... . The information of two successive MI’s

corresponds roughly to the information in the warped-

DCT coefficients for 20 ms. We calculated the mapping

function for an additional response variable of 10 ms as a

prediction. So, the duration is 30 ms and q = 6 .

2.3.3. Nonlinear Multivariate Regression Analysis
 We used the following nonlinear MRA model for y

j
,

y x x
j ij ij k ki

i

p
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k

j
= + − +

==

+

∑∑ { exp( )}φ π γ ε2

1

1

            (1)

where φ
ij
, π

ij
, and γ  are model parameters, x

ki
 is the i th

component in the vector for the k th MI, x
k
 is the average
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value of x
ki
 for all i , and ε

j
 is an error term. This

formulation reduces to linear MRA when π
ij

= 0 .

In the original paper on nonlinear auto-regressive

analysis[13], the maximum likelihood (ML) estimate i s

shown to be approximated by the least-square error (LSE)

estimate. So, we used the LSE for estimating parameters φ
ij

and π
ij
 when γ  is a constant. In this case, matrix algebra

can be used to solve the problem without iteration.

The equation for all data is

Y X= +β ε            (2)
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The parameters are estimated using LSE as

ˆ ( ' ) 'β = −X X X Y1
          (7)

which is the same formalization as linear MRA. This is an

important advantage of this model.

It is, however, necessary to determine the constant

value of in advance. Following the method used in the

nonlinear AR model [13], we determined γ   using

εγ = 0 00001. , the maximum of the average value x
k
, and a

factor Aγ .

γ εγ γ= − ⋅
≤ ≤

A x
k N

kln / max )
1

2(           (8)

The degree of the fit depends on the value of Aγ . So, we

varied Aγ  and re-estimated the parameters to find the

model that minimized the error.

Once the parameters were determined, the warped-DCT

coefficients for every 5 ms are mapped from two

successive MI’s. Then the STRAIGHT spectrum with the

coefficients for every 1ms was recovered by interpolation

and the sound is resynthesized with the usual STRAIGHT

procedure.

3. Experiments

3.1. Data and conditions
We used male (MHT) and female (FTK) speech from an

ATR database of sentences to estimate and evaluate the

mapping function. The sampling rate used to produce the

MI was 20 kHz whereas the sampling rate for STRAIGHT

and the warped-DCT was 12 kHz to fit the range (100 Hz -

6kHz) of the auditory filterbank of the MI. The segment

duration for estimating the mapping parameters was

restricted to 50 sec. ( N = 5000 ) by the memory size for

MATLAB. This corresponds to about 12 sentences (6 male

and 6 female). The vector length of h values between 0 and

7 in the MI was 56. So, the length of the explanation

vector x
k
for one MI in Eq. 4 was 112 for the nonlinear

case and 56 for the linear case. As shown in Eq. 5, these are

doubled in the explanatory variable. The length of the

response variable is 6.

3.2. Error estimation in the warped-DCT domain
We evaluated the estimated mapping function in the

warped-DCT domain for one sentence (MHT_A01). Figure

3(a) shows the time sequence of the 0th warped-DCT

coefficients (DC component) originally derived from the

STRAIGHT spectrum (solid line) and that mapped from the

MI using linear MRA (dashed line).  The dashed and

dotted lines are quite different. The average values shown

by the solid and dashed horizontal lines are different. The

root-mean-squared (rms) error for all of the warped-DCT

coefficients was -8.5 dB relative to the rms amplitude.

Figure 3(b) is a scatter plot of the original values and the

mapped, or reconstructed, values of the 0th warped-DCT

coefficients. The diagonal line shows the identity

mapping. The points do not converge on the diagonal and

there is considerable scatter below it.

Figure 4(a) shows the same original warped-DCT

coefficients (solid line) and the coefficients mapped by

the nonlinear MRA when Aγ =100 . The fit is much

improved over the linear case (Fig. 3a); the average values

are almost coincident. The scatter plot in Fig. 4(b) shows
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Figure 3.  0th coefficients of warped-DCT for male speech

(closed, MHT_A01) using linear MRA. (a) Time sequence of

the original coefficients from STRAIGHT (solid line) and

mapped coefficients from the MI (dashed line). Average

values are plotted as horizontal lines. (b) Scatter plot; the

diagonal line shows the identity mapping.
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better convergence around the identity mapping. The rms

error was reduced to -13.8 dB.

Table I shows the rms error for the sentence used in the

parameter estimation (closed, MHT_A01) and for the test

sentence (open, MHT_A50).  The nonlinear MRA is always

effective and the rms error for the open data is better than

the error for the closed data using linear MRA. The rms

error depends on the factor Aγ  and it is better when

Aγ =100 .

3.3. Waveform and sound quality
Figures 5(a) and 5(b) show the waveforms of the

original sound, MHT_A01, and the sound resynthesized

from the STRAIGHT spectrum with the warped-DCT

decomposition. The waveforms are very similar. The sound

is as good as STRAIGHT sound without the warped-DCT

and only slightly degraded from the original sound.

Figures 5(c) and 5(d) show the waveforms of the

sounds resynthesized from the MI using linear and

nonlinear MRA. The waveforms contain pulse-like

components. The sound is sufficiently intelligible to

identify phonemes but it is obviously degraded by the

pulse-like unstable components which make it sound

unstable. The sound quality is slightly better for the

nonlinear MRA, but not a lot.

One possible source of degradation is the recovery of

the STRAIGHT spectrum from the warped-DCT

components, and in particular, the exponential magnitude

expansion (Fig. 1). Errors in the warped-DCT domain are

emphasized exponentially which can result in extreme

values in the STRAIGHT spectrum. In practice, in this

project, the recovery function was 10 30x / or  10 40x /  instead

of the original 10 20x / .  It was necessary to limit the value to

improve the sound quality. Another source of degradation

may be the recovery after the "temporally-spreading"

nonlinearity in the MI using the nonlinear MRA which i s

more applicable for instantaneous nonlinearities. So at

this point, the recovery process is the focus of the

problem.

4. Conclusions
An Auditory VOCODER is proposed to resynthesize

sound from the Auditory Mellin Image using the

STRAIGHT. The procedure circumvents the iterative

process required in conventional auditory resynthesis.

Although the recovery process currently limits the sound

quality, with improvements, it may be possible to use the

system to implement auditory forms of noise suppression

and stream segregation into speech applications such as

ASR.
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Table I, RMS error in dB for closed and open data in

various MRA conditions.

Linear

MRA

Nonlinear

Aγ =10
Nonlinear

Aγ =100

 closed (MHT-A01) -8.5 -13.3 -13.8

 open (MHT-A50) -7.1 -10.8 -11.7


