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Abstract

This paper addresses the problem of integration of missing data
theory in the context of robust speech recognition in additive
noise. It shows that techniques based on statistical estimation
and thresholding of a posteriori signal-to-noise ratio (SNR) can
be used for the detection of reliable (not much affected by noise)
features as opposed to unreliable or missing (masked by noise)
features. In the paper, a statistical detector for reliable features
is proposed and tested for several values of deterministic and
probabilistic thresholds at very low SNRs (from 20 to -10 dB).
The limitations of the detector are also studied and measures
for the evaluation of the performance of such a detection are
proposed.

1. Introduction
Speech recognition using missing feature approach is based on
the assumption that additive noise masks some parts of the time-
frequency representation of the speech signal and leaves the
other parts not strongly affected. Experiments have shown that
the combination of detection of “not very noisy” (present or
reliable) features based on thresholding of a priori SNR and
recognition processing that uses only these features allows to
significantly improve the performance of speech recognizers
under noisy conditions [1–3]. Unfortunately, the a priori SNR
is unavaliable in real operating conditions and detection of the
reliable features has to be performed using a sub-optimal crite-
rion. Detection of the reliable features for recognition purposes
based on spectral subtraction was first presented by Drygajlo
and El-Maliki [4]. Other methods based on a thresholding of
a posteriori SNR were introduced in [5, 6]. It can be shown
that spectral subtraction and SNR based detection are equiva-
lents [7, 8]. The introduction of a soft tresholding (measure of
reliability) instead of a hard thresholding allows to improve the
performance of speech recognizers [9, 10].
In this paper we present the problem of the detection of reli-
able features using SNR based detection criteria. We present
the theoretical limits of such a detection. Then we study the
performances of the detectors based on deterministic and statis-
tical detection criteria.

2. Problem statement
In the approach proposed in this paper the detection of reli-
able features needs an estimate of the local SNR from the noisy
speech features |Y (ω, t)| and from the noise features |N(ω, t)|.
This estimate of the local SNR is then used to divide the features
into reliable and unreliable by the use of thresholding.
First we define the local a priori SNR as the ratio of the clean

signal magnitude to the difference between the magnitudes of
the clean and noisy signals:

SNRprior(ω, t) =
|X(ω, t)|2��|Y (ω, t)| − |X(ω, t)|��2 . (1)

This measure evaluates the distortion introduced by the noise.
Unfortunately the clean signal is not available and such a mea-
sure cannot be calculated directly.
The addition of two signals in the time domain corresponds to
an addition in the spectral domain. The magnitude of the result-
ing signal depends on the magnitude of the two signals and on
the phase difference between the two signals. If Y (ω, t) is the
sum of X(ω, t) and N(ω, t), its magnitude can be expressed as:

|Y (ω, t)| =p
|X(ω, t)|2 + |N(ω, t)|2 + 2 · |X(ω, t)| · |N(ω, t)| · cos(α)

(2)

where α is the phase difference between X(ω, t) and N(ω, t).
The a priori SNR defined in Eq. 1 is minimum when , for a
given value of |X(ω, t)|, the value of |Y (ω, t)| is maximum.
From Eq. 2 we deduce that |Y (ω, t)| is maximum when α =
0. In this case |Y (ω, t)| = |X(ω, t)| + |N(ω, t)| and Eq. 1
becomes:

SNRprior(ω, t) =

|X(ω, t)|2��|Y (ω, t)| − |X(ω, t)|��2 ≥ |X(ω, t)|2
|N(ω, t)|2 ≥

� |Y (ω, t)|
|N(ω, t)| − 1

�2

.

(3)

The a posteriori SNR defined as SNRpost(ω, t) = |Y (ω,t)|2
|N(ω,t)|2

can be used as a detection criterion because it is directly related
to the a priori SNR:

SNRprior(ω, t) ≥
�p

SNRpost(ω, t) − 1
�2

. (4)

When we have only access to the noisy signal and an estimate
of the noise, the selection of the features with an a priori SNR
higher than a certain value can be obtained by thresholding the a
posteriori SNR. Therefore, a feature is declared reliable if its a
posteriori SNR is higher than a threshold value τ . The criterion
for the detection of the reliable features is:

SNRpost(ω, t) =
|Y (ω, t)|2
|N(ω, t)|2 > τ. (5)

According to Eq. 4 the criterion for the detection of reliable
features using Eq. 5 can also be expressed as a function of the a
priori SNR:

SNRprior(ω, t) > (
√

τ − 1)2 (6)
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Figure 1: SNRprior(ω, t) in function of |Y (ω,t)|2
|N(ω,t)|2 for the ad-

dition of two spectra with an unknown phase difference. The
black curve corresponds to the lowest possible value described
in Eq. 3. The dots are the features. The black dots represent the
features which will not be detected as reliable if we fix a thresh-
old τ = 6dB which corresponds to SNRprior(ω, t) ≥ 0 dB.
The features are obtained using ten digit utterances with factory
noise added at a global SNR of 10 dB.

Fig. 1 presents the a priori SNR as a function of the a posteri-
ori SNR. The features have been generated artificially by adding
artificial signal and noise with a random phase difference. The
black curve is the limit of detection defined by Eq. 3. To show
the limitations of detection based on the a posteriori SNR, we
present in this figure an example of detection. We choose to
detect as reliable the features with an a posteriori SNR higher
than 6 dB, which corresponds from Eq. 4 to an a priori SNR
greater than 0 dB. The black points of Fig. 1 represent the fea-
tures which have not been detected even if their a priori SNRs
are higher than 0 dB. This represents the theoretical limit of
the SNR based approach for the detection of the reliable fea-
tures. Even if we estimate the noise spectral magnitude per-
fectly, some of the reliable features cannot be detected. This is
due to the phase difference between the clean speech spectrum
and the noise spectrum.

3. Deterministic detection criteria
The first SNR based approach for the detection of reliable fea-
tures uses a deterministic criterion. The value of the noise mag-
nitude cannot be extracted from the noisy signal. Therefore
we use the mean of the noise magnitude calculated during the
non-speech segments as the estimate of the noise magnitude.
We present a method based on a thresholding of the a posteri-
ori SNR and show that other methods based on deterministic
criteria, presented in the literature, are similar to the proposed
method.
To calculate the local a posteriori SNR, the value of the noise
signal magnitude |N(ω, t)| is needed. In a single channel ap-
plication this value is unavailable and has to be estimated. If we
consider that the noise features follow a normal distribution, the
mean value µN (ω) represents the best estimate of the noise in
the sense of least square error criterion. The a posteriori SNR
can therefore be estimated and the feature |Y (ω, t)| is reliable
if: dSNRpost(ω, t) =

|Y (ω, t)|2
|µN (ω)|2 > τ (7)

where dSNRpost(ω, t) is the estimate of the a posteriori SNR.
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Figure 2: SNRprior(ω, t) in function of |Y (ω,t)|2
|µN (ω)|2 for real fea-

tures. The black curve corresponds to the lowest possible value
described in Eq. 3. The dots are the features. The black dots
represent the mis-classification errors for a decision threshold
τ=3 dB. The features are obtained using ten digit uterances with
factory noise added at a global SNR of 10 dB.

Fig. 2 plots the a priori SNR as a function of the estimated a
posteriori SNR. The a priori SNR is calculated from the clean
and the noisy signal. The a posteriori SNR is estimated using
the mean of the magnitude of the noise as in Eq. 7. These local
SNR values have been obtained using ten sequences of digits
extracted from the TIDigit database. Factory noise was added
to the features at a global SNR of 10 dB. Misclassified features
are plotted with black dots instead of gray dots. The upper-
left region represents the features whose a priori SNR is higher
than the threshold, but which are not detected as reliable. This
misclassification is due to the problem of the unknown phase
difference between the clean signal and the noise which does
not permit correct estimation of the a priori SNR. The lower-
right misclassification region is due to the fact that the noise
magnitude is not equal to its mean but is distributed around this
mean. It can therefore be greater than the mean value result-
ing in a misclassification. The observation of Fig. 2 shows the
limit of detection of reliable features based on thresholding the
a posteriori SNR: as we increase or decrease the value of the
decision threshold, one type of misclassification error increases
when the other decreases and vice versa.

4. Statistical detection criterion

The methods for the detection of reliable features presented
above use the average noise magnitude spectrum as the estima-
tion of the magnitude spectrum of the noise. If we consider that
the noise magnitude follows a normal distribution in each fre-
quency band, we can represent its distribution in each band by
the corresponding mean and variance. The supplementary in-
formation of the variance can be introduced into another kind of
detector, a statistical detector. This detector calculates a prob-
ability for a feature to be reliable rather than to make a hard
decision (reliable/unreliable).

In order to estimate the distribution of the noise magnitude in
each frequency band, we consider that the noise follows a nor-
mal distribution in each sub-band. This distribution of the noise



magnitude in each frequency band is therefore expressed as:

p
�
|N(ω)|

���µN (ω), σ2
N (ω)

�
=

1√
2π|σN(ω)| exp

�
(N(ω) − µN (ω))2

2σ2
N (ω)

�
.

(8)

where µN (ω) and σ2
N (ω) are, respectively, the mean and vari-

ance of the noise in the band ω.
The criterion for the detection of the reliable features presented
in Eq. 5 can be rewritten to express the condition of the detec-
tion as a function of the noise. In this case, |Y (ω, t)| is reliable
if:

|N(ω)| <
|Y (ω, t)|√

τ
. (9)

This threshold can be combined with the model representing
the noise magnitude distribution. Therefore we can express the
probability that the a posteriori SNR is higher then the value τ :

P
�

SNRpost(ω, t) > τ
���|Y (ω, t)|, µN (ω), σ2

N (ω)
�

=

P

�
|N(ω, t)| <

|Y (ω, t)|√
τ

���µN (ω), σ2
N(ω)

�
=

Z |Y (ω,t)|
τ

−∞

1√
2π|σN (ω)| exp

�
(n − µN (ω))2

2σ2
N (ω)

�
dn

(10)

The hard decision presented previously in Eq. 7 is replaced by
a soft decision threshold. In the case of hard decision threshold,
a feature can be either reliable or unreliable. The soft decision
threshold of Eq. 10 gives a probability between zero and one to
be reliable.
To divide explicitly the features into reliable and unreliable, we
introduce a threshold value θ ∈ [0, 1]. A feature is declared
reliable if:

P
�

SNRpost(ω, t) > τ
���|Y (ω, t)|, µN (ω), σ2

N(ω)
�

> θ (11)

where θ represents the probability of having SNRpost(ω, t) >
τ .
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θ=0.5θ=0.5

θ=0.75θ=0.75

θ=0.9θ=0.9

θ=0.999θ=0.999

Figure 3: SNRprior(ω, t) in function of |Y (ω,t)|2
|µN (ω)|2 for real

features. The black curves correspond to the lowest possi-
ble value described in Eq. 3 for several values of θ, θ =
0.5, 0.75, 0.9, 0.999. The features are obtained using ten digit
uterances with factory noise added at a global SNR of 10 dB.

Fig. 3 plots the a priori SNR as a function of the a posteri-
ori SNR with the detection thresholds corresponding to θ =
0.5, 0.75, 0.9, 0.999. When θ = 0.5 we have the same thresh-
old as in the deterministic approach presented in Fig. 2. When
we increase the value of θ, we decrease the number of unreli-
able features which are misclassified, but on the other side we
increase the number of reliable features which are misclassified.
The value of θ allows us to choose between the relative impor-
tance of these two errors. If we want to avoid to have unreliable
features detected as reliable, we have to choose a higher value
for θ (0.99 for example), otherwise, if we want to increase the
number of reliable features correctly detected, we will choose a
smaller value of θ.

5. Evaluation of the detection
The different detectors presented in the previous section try to
divide the features in the spectro-temporal representation of the
speech signal in two classes, reliable and unreliable ones, ac-
cording to a threshold τ . In order to compare the detectors, two
measures are defined. These measures compare the proposed
detector with an “ideal” detector which uses the clean signal
and the noisy signal to compute the a priori SNR (Eq. 1) and to
divide the features into reliable and unreliable.

Reference Mask Test Mask

Reliable False unreliable error False reliable error

ω ω

ττ

Figure 4: Two possible types of error in reliable/unreliable fea-
tures detection

For this purpose we define two measure of performance:

• False unreliable feature detection error (FUFDE): This
error represents the ratio of the number of features that
are detected as unreliable when they are reliable to the
total number of unreliable features.

• False reliable feature detection error (FRFDE): This er-
ror represents the ration of the number of features that
are detected as reliable when the are reliable to the total
number of reliable features.

False unreliable feature detection errors reduce the set of reli-
able features, but false reliable feature detection errors intro-
duce features masked by noise in the set of reliable features.

6. Performances
The statistical detector for unreliable features presented in
Eq. 11 has been tested for several values of θ and τ . The de-
terministic detectors (Eq. 7) are special cases of the statistical
detector, so their performances can be derived from the pre-
sented results, using θ = 0.5.
The TIDigit database was used to test the detectors. Sixty-four
sentences of seven digits each were extracted randomly. Noises
from the Noisex database were added with several global SNRs
ranging from -10 to 20 dB. The signals were down-sampled to



a frequency of 8 kHz and transformed in the time-frequency
domain using a seventeen band Mel filter bank. The reference
mask of reliable features, computed using the a priori SNR cal-
culated with the clean and the noisy signal (Eq. 1), is compared
to those obtained using the proposed detector. The results pre-
sented in Fig. 5 represent the measure of the false unreliable
feature detection error (FUFDE) as a function of the false reli-
able feature detection error (FRFDE) (ROC curves) for values
of τ = 6 dB.
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Figure 5: ROC curves for τ = 6 dB and θ value varying from 0
to 1 with white Gaussian noise added with a global SNR varying
from -10 to 20 dB by steps of 10 dB.

The value of θ allows a tradeoff between false reliable feature
detection errors and false unreliable features detection errors.
As the value of θ increases, the value of FUFDE increases and
the value of the FRFDE decreases. If the FRFDE is an impor-
tant feature for the recognition, a high value (near one) of θ has
to be chosen.
Several conclusions can be derived from these experiments:

• As the global SNR increases, the number of misclassifi-
cation errors decreases. If the SNR is higher, the differ-
ence between speech and noise increases and it becomes
easier to detect the reliable features.

• As the threshold τ increases, the FRFDEs decrease. As
can be observed in Figs. 2 and 3, when the a posteriori
SNR is small (0 to 5 dB), the FRFDE occur more often
than when the a posteriori SNR is greater ( > 5 dB.).

• As the threshold τ increases, the number of reliable fea-
tures correctly detected decreases. This is explained by
the limitation of the chosen detection method presented
in Fig. 1.

Recognition results obtained using soft thresholding approach
have been presented in [7, 9]. It was observed that the soft
thresholding approach allows to improve the performance in
several noise conditions (white Gausssian noise, babble noise,
Lynx helicopter noise, factory noise, etc.) both for digits and
small vocabulary recognition tasks.

7. Conclusion
In this paper we have presented a study of the problem of the
detection of the reliable features of a noisy speech signal. We
have shown that detection criterion based on a posteriori SNR

has a theoritical limitation explained by the unknown phase dif-
ference between the noise and the speech signal. In real op-
erating conditions, the unknown variation of the noise magni-
tude also introduces detection errors. A statistical detector has
been proposed that allows the tradeoff between two kinds of er-
rors: false reliable- and false unreliable feature detection errors.
These errors represent the main limitation of missing feature
based approaches developed for the robust speech recognition
domain.
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