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 ABSTRACT

The field of computational auditory scene analysis (CASA) strives
to build computer models of the human ability to interpret sound
mixtures as the combination of distinct sources.  A major obstacle to
this enterprise is defining and incorporating the kind of high level
knowledge of real-world signal structure exploited by listeners.
Speech recognition, while typically ignoring the problem of
nonspeech inclusions, has been very successful at deriving powerful
statistical models of speech structure from training data.  In this pa-
per, we describe a scene analysis system that includes both speech
and nonspeech components, addressing the problem of working back-
wards from speech recognizer output to estimate the speech compo-
nent of a mixture.  Ultimately, such hybrid approaches will require
more radical adaptation of current speech recognition approaches.

1. INTRODUCTION

Listeners are able to interpret complex sound mixtures through the
strong constraints provided by their knowledge of ‘actual sounds’.
A major obstacle to researchers in computational auditory scene analy-
sis, building computer models of this ability, is the question of col-
lecting, representing and deploying such constraints.  If the ability to
understand sound mixtures is intimately bound to knowledge of real-
world sound characteristics, it will be difficult to make progress in
modeling one without a reasonable grasp on the other.

Fortunately, there exists a domain in which considerable achieve-
ments have been made in capturing the typical features of a class of
sound: automatic speech recognition (ASR).  This paper looks at in-
tegrating the approaches and domains of computational auditory scene
analysis with the data-derived knowledge and ambiguity-resolution
techniques of automatic speech recognition.  While much previous
work in CASA has been oriented towards helping the problem of
speech recognition [1, 2, 3], this has almost always been formulated
in terms of a decoupled preprocessor [4]; given that speech recogni-
tion is currently the further advanced of the two domains, we con-
sider the converse possibility of using speech recognizers to help
scene analysis systems, and integrating the two processes to benefit
them both.  (This was indeed the approach which Weintraub lamented
he could not take [1]).

A current theme in CASA work is iterative explanation, in which an
account of a scene is constructed by attending to the successive re-
siduals left after explaining more prominent pieces [5, 3, 6].  The
approach adopted in this paper is to analyze mixtures of speech and

environmental sounds by hypothesizing the presence of objects of
both types, then iteratively refining each component.  Exploiting gen-
eral source knowledge represented as the state of hypothesized mod-
els is the explicit goal of Ellis’s ‘Prediction-driven’ CASA [6]; it is
also implicit in Moore’s decomposition of a signal as the combina-
tion of hidden Markov models [7].  However, the majority of work in
CASA has concentrated on identifying the number and extent of the
different sources present, while limiting them to simple models such
as smoothly-varying periodic sounds [2].

A major barrier to the mutual integration of scene analysis and speech
recognition systems is their incompatible representations.  ASR sys-
tems assume that their input is a single voice, hence they employ
representations (such as normalized cepstral coefficients) that encode
phonetically-relevant signal variation in a low-dimension space, ex-
cluding detail such as voicing periodicity.  By contrast, periodicity is
the most popular cue in scene analysis systems which must therefore
use richer representations.  Even assuming speech, a CASA system
would strive to separate each of several overlapped voices present in
an acoustic scene; ASR systems fail miserably when they encounter
such unanticipated complications.  This project addresses integrating
the two fields by finding a translation between their representations.

After describing an overall design for a ‘hybrid’ speech/nonspeech
scene analysis system, we examine in particular the adaptations re-
quired of a conventional speech recognizer for this purpose.  After
showing some preliminary results, we conclude by discussing how
this approach compares to previous CASA and ASR systems, and
make some observations on the kinds of components required for an
improved analyzer of speech-bearing acoustic scenes.

Practical motivations for this work are diverse:  Robustness to
nonspeech interference is a major issue in ASR, and new approaches
to recognition of speech signals corrupted by additions are urgently
required.  Other applications could include multimedia indexing in-
terested more in extracting the nonspeech sound effects as content
indicators, but which must handle speech appropriately [8].  Another
scenario is a portable aid for the deaf, providing a textual description
of the sound environment in near-real time [9].  Ultimately this same
information will be required by humanlike robots of the future.

2. SYSTEM OVERVIEW

Figure 1 shows a block diagram of the complete system.  The sound
mixture is fed to the front-end, which consists of a bank of band-pass
filters approximating the ‘critical bands’ of the human auditory sys-
tem, followed by temporal envelope extraction.  This gives a smooth



filtering [10], which applies a band-pass filter in the
log-domain to the envelope of each frequency channel
to remove long-term transfer characteristics.  This nor-
malized spectrum is smoothed with the so-called Per-
ceptual Linear Prediction, then projected into a con-
densed and decorrelated feature space with a truncated
cepstral transform.  This gives a 13 element feature
vector for every 12.5 ms frame, typical of the low-di-
mensional feature spaces used in speech recognition.

The next step estimates the probability that a given
frame represents each of 56 phonetic labels with a neu-

ral-net classifier, trained to match a hand-labeled corpus.  The net-
work actually looks at the 13 features plus their derivatives and
double-derivatives over a 9-frame context window giving 39x9 =
351 input units feeding a hidden layer of 500 units.  Estimates of
label probabilities are fed to a Markov decoder, which searches for
the most likely label sequence in conjunction with its knowledge of
word and language structure.  This gives an interpretation of the
input signal as a sequence of phoneme labels (and hence words).  At
this stage, conventional speech recognition is complete.

For our task of mixture interpretation, however, we also need to
reconstruct an estimate of the ‘inferred’ spectrum for the speech
component.  This is the role of the right-hand half of the figure,
which converts the phone labels back into the spectral domain.
Firstly, the labels are converted into the recognizer feature space –
the converse of the neural-net classifier.  This stage is problematic,
since it is notoriously difficult to work a neural net ‘backwards’ to
identify the actual regions of feature space that correspond to a par-
ticular output.  For the moment, we substitute the mean vector cal-
culated over all correspondingly-labeled training frames.  This re-
constituted feature vector is transformed to the normalized spectral
domain with an inverse cepstral transform.

The final step is to reverse the normalization of the initial RASTA
step, which removed the slowly-varying portion of the temporal
envelope in each band; denormalization is a matter of restoring this
low-frequency portion from the input signal.  Converting this sum-
mation back into the linear domain gives the desired estimated spec-
tral contribution, which carries short-term variation determined by
the modeled phonetic label sequence superimposed on the slowly-
varying component of the original input spectrum.
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Figure 2: Components of the modified speech-recognition module.

Figure 1: Overview of the CASA-ASR hybrid system.

representation of the signal’s energy as a function of time and fre-
quency.  These spectral envelope features form the input to the com-
parator, which subtracts combinations of the estimates from the ‘com-
ponent models’ (currently the speech recognizer and nonspeech ana-
lyzer, although in principle more could be added) to form ‘partial
residuals’, which are returned to the models for re-estimation.

Each component model attempts to explain the partial spectrum it
has been given according to its constraints: The speech recognizer
searches for a matching phoneme sequence, and the nonspeech ana-
lyzer (which is a simplified version of the system described in [6])
tries to match its input with simple noise elements.  In each case, a
model will generate two outputs: abstract model parameters (e.g.
the phoneme sequence or the noise profiles), and the spectral sur-
face implied by these parameters.  This estimate of the contribution
of the model to the overall signal is fed back to the comparator ready
for the next round of iterative estimation;  this process repeats until
the complementary estimates stabilize.

The sophisticated sequential constraints of the speech recognizer
require a certain temporal context to identify the preferable label
assignments.  This ‘interpretation lag’ requires the entire system to
work at a large temporal granularity of hundreds of milliseconds.

Two questions arise immediately with such an iterative system:  how
do we obtain starting estimates, and will the iteration converge?
We do not have general answers to these points, but as long as the
signal is reasonably close to speech, the high-level constraints of
the speech recognizer will push towards a single local interpreta-
tion, leaving the less-constrained nonspeech models to mop up the
remainder.  We note a resemblance to the Expectation-Maximiza-
tion (EM) algorithm:  the system makes an allocation of the signal
energy to the different component models based on the spectral es-
timates of the last iteration; these are then fed to the models, which
searches for the parameters that maximize their fit to the allocated
spectrum.

3. THE SPEECH RECOGNIZER

In the system overview, the speech recognizer constitutes a single
component model, taking a partial residual spectrum as input, and
generating an abstract explanation (as a sequence of phonetic la-
bels) and a corresponding estimate of the speech component’s spec-
trum in the mixture.  This function is broken down in figure 2.  The
left-hand side of the figure constitutes a conventional speech
recognizer:  the input spectral envelope is first normalized by RASTA
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Figure 3: Analysis of speech/nonspeech mixture.

4. RESULTS

Figure 3 illustrates the results of the current implementation, which
has focused on the speech signal reconstitution.  The top image is
the spectrogram of a clean speech signal, shown in the auditory fil-
ter bank domain that is the base representation of the system.  The
next panel shows the spectrogram for a nonspeech addition (a clap),
and the third image is the spectrogram of their mixture:  the noise of
the clap is visible superimposed upon the speech.  In the first itera-
tion of the system, no nonspeech elements have been proposed, so
the entire signal is fed to the speech recognizer;  the phonetic labels
assigned by the decoder are shown below the mixture.  The next
stage takes the low-frequency portion of the input signal (panel (d))
and superimposes more rapid fluctuations derived from the labels to
reconstitute an estimate of the speech component in the mixture
(panel (e)).  Note the absence of a transient aligned with the
nonspeech burst in the mixture, since this was not reflected in the
phonetic labels.

The bottom frame shows the residual after removing the speech es-
timate from the original signal;  this is the input to the nonspeech
scene analyzer.  The clap transient – which should be explained as
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nonspeech – is prominent as we expect.  However, many other
patches of energy appear where the reconstituted speech has failed
to reach the peak energy in strong vowel segments.  We are cur-
rently working to resolve this misalignment, as well as the further
integration of the nonspeech models.

When complete, this residual will be modeled as a combination of
noise bursts by the nonspeech analyzer; this nonspeech estimate will
in turn be subtracted from the full mixture, giving a new residual to
be relabeling by the recognizer, onward through repeated iterations
until convergence is reached.

5. DISCUSSION

Comparison to other approaches

It is only relatively recently that speech recognition has been good
enough to allow researchers to consider mixed signals.  A common
approach to recognizing speech in noise has been to base a recognizer
on features that are distorted by adding noise to the training data-
base, or by a suitable transformation of the templates [11].  This
approach treats the nonspeech component as stationary; by contrast,
scene analysis explicitly detects and models interference and can
exploit structure in the nonspeech component.

HMM decomposition [7] is also able to exploit prior knowledge of
dynamic nonspeech additions by finding combinations of hidden
Markov models for both speech and interference that fit the mix-
ture.  While HMMs are excellent for speech, which is well modeled
as a sequence of discrete symbols, their applicability to sounds such
as footsteps or passing cars is less clear: their attributes may vary
continuously, resisting the assignment of discrete states.  Also, the
speech-specific features used with HMMs are inadequate for many
nonspeech distinctions.  The biggest practical limitation of HMM
decomposition models is the calculation of the conditional prob-
abilities of state assignments given the input observations, which
typically requires integrating across all possible divisions of the
observation and fixed relative levels of the models.  The simpler
nonspeech models of the current system avoid these problems but
sacrifice a rigorous probabilistic foundation.

The biggest distinction between the current system and most work
in CASA is that it does not use the pitch cue.  Speech recognizers
similarly ignore periodicity, although perceptual experiments dem-
onstrate pitch to be an important basis for sound organization [12].
Few CASA systems have exploited much structure in their signals
beyond local data features; top-down components rely on stored tem-
plates [5].

Some problems and possible improvements

The iteration between speech and nonspeech presents a start-up prob-
lem: one or other component has to make a preliminary effort to
recognize the mixture.  The speech part incorporates stronger con-
straints, but to start with it implies that a mixture which confounds a
conventional speech recognizer will also defeat this system.  It is
interesting to speculate how humans handle this bootstrapping prob-
lem; the paradigm employed here of ‘latching on’ to a speech signal



then looking for additional explanations of whatever is left, has in-
tuitive appeal.

The noise-cloud nonspeech model should work for many ‘environ-
mental’ sounds, but music and other speech will require more radi-
cal adaptations of the speech recognition component to employ a
distinction of periodic and aperiodic signals, and more involved in-
tegration of the nonspeech analysis module, which must include
periodicity-based separation.

Adaptive recognizers, which shift their classification boundaries to
match inferred speaker characteristics, could improve nonspeech
discrimination by supporting more accurate estimates of the speech
component.

Cooke [4] makes a number of observations concerning desirable
properties of speech recognizers to be used with scene analysis sys-
tems.  The current system would benefit from his idea of a recognizer
that penalizes absence of energy more strongly than excess (since
excess could be caused by mixture components, whereas absence
cannot).

This ties into one of the key ideas of the prediction-driven approach
of Ellis [6], that the ubiquity of masking is a problem for models
based on subtraction and residuals:  a distinction must be made be-
tween the absence of energy in a given channel, and the situation
when an existing element has accounted for all the input energy at a
level that could be masking other contributions.  His solution is to
use probabilistic representations of spectral level, incorporating posi-
tive and negative deviation bounds around a specified level:  zero
energy in the input has very tight bounds, zero residual behind a
masking prediction has considerably more latitude.  Expressing sig-
nal estimates as probability densities would permit a more mean-
ingful reconstitution from phonetic labels, which relate more natu-
rally to spectral distributions.

6. SUMMARY AND CONCLUSIONS

Any sound understanding system, even if its primary focus is speech
signals, will need to handle both speech and nonspeech sounds in
the real world.  Human listeners are proficient at organizing sound
mixtures, thanks to their general knowledge of sound.  To build a
computer system that can approach such human abilities we need to
solve the incorporation of this kind of knowledge.

Automatic speech recognition has become a practical reality thanks
to statistical approaches to collecting and exploiting knowledge of
the structure of speech sounds.  This work looked at employing this
structural knowledge of speech in a wider sound understanding do-
main.  We combined a speech recognition module into a computa-
tional auditory scene analysis framework that can interpret parts of
the signal either as speech or with models of nonspeech sounds.
This required a way to work backwards from phonetic label assign-
ments to an estimate of the speech signal.  Using this transforma-
tion, an iterative algorithm for estimating speech and nonspeech
components in a mixture is made possible.

The problem of handling sound mixtures must be solved by intelli-

gent recognition of nonspeech as well as speech.  Integrated sys-
tems of the kind described have many applications beyond speech
input, including content-based indexing of multimedia databases and
aids for the hearing impaired.  Future developments will include
speech recognition components better suited to partially-obscured
signals, and models for nonspeech able to characterize a wider range
of the sounds we encounter.  Combing the best speech recognition
with the most powerful ideas from scene analysis will lead to inte-
grated systems that perform both tasks far better than any approach
that takes a less realistic view of real-world sounds.
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