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ABSTRACT

Multiple-instance learning algorithms train classifiers from

lightly supervised data, i.e. labeled collections of items,

rather than labeled items. We compare the multiple-instance

learners mi-SVM and MILES on the task of classifying 10-

second song clips. These classifiers are trained on tags at

the track, album, and artist levels, or granularities, that have

been derived from tags at the clip granularity, allowing us

to test the effectiveness of the learners at recovering the clip

labeling in the training set and predicting the clip labeling

for a held-out test set. We find that mi-SVM is better than a

control at the recovery task on training clips, with an average

classification accuracy as high as 87% over 43 tags; on test

clips, it is comparable to the control with an average classifi-

cation accuracy of up to 68%. MILES performed adequately

on the recovery task, but poorly on the test clips.

1 INTRODUCTION

There are many high quality sources of metadata about mu-

sical material such as Last.fm, the All Music Guide, Pan-

dora.com, etc. Typically, however, each source provides

metadata only at certain granularities, i.e. describes the mu-

sic only at certain scales. For example, the All Music Guide

provides metadata about many artists and albums, but few

tracks. Similarly, Last.fm users have described a large pro-

portion of artists, a smaller proportion of albums, and an even

smaller proportion of tracks. Furthermore, there are no pub-

licly accessible, large-scale sources of metadata describing

parts of tracks known as clips, here taken to be 10-second

excerpts. This paper describes the use of clip-level classifiers

to refine descriptions from one granularity to finer granular-

ities, e.g. using audio classifiers trained on descriptions of

artists to infer descriptions of albums, tracks, or clips.

Many descriptions of music apply at multiple granulari-

ties, like rap, or saxophone, although certain descriptions are

valid only at specific granularities like seen live or albums I
own. Descriptions valid at one granularity, however, might

only apply to certain elements at a finer granularity. For

example, at the artist level, the Beatles could very reasonably

be tagged psychedelic. This tag would certainly apply to

an album like Sgt. Pepper’s Lonely Hearts Club Band but

would not apply to one like Meet the Beatles. Similarly, the

John Coltrane track “Giant Steps” could very reasonably be

tagged saxophone. While valid for most clips in the track, it

most notably is not valid during the piano solo. This paper

describes systems capable of deriving, from feature similarity

and a list of psychedelic artists or saxophone tracks, the clips

for which these tags are most appropriate.

By considering tags one at a time, as either being present

or absent from a clip, we pose the automatic tagging (autotag-

ging) problem as clip classification. In this framework, the

task of metadata refinement is known as multiple instance
learning (MIL) [6]. In MIL, classifiers are trained on labels

that are only applied to collections of instances, known as

bags. Positive bags contain one or more positive instances,

while negative bags contain no positive instances. Labeled

bags provide less information to the learner than labeled in-

stances, but are still effective at training classifiers. For the

purposes of this paper, clips are the instances to be classified,

and artists, albums, and tracks, in turn, are the bags.

There are two problems addressed in the multiple-instances

learning (MIL) literature, the classification of bags and the

classification of instances. As we are interested in refining

musical metadata from bags to the instances within them, we

only concern ourselves with multiple-instance learners that

are capable of classifying instances. A related problem that

we also examine is the training of a general instance-level

classifier from bag-level labels. This task is slightly different

in that the instances to be labeled are not in the training bags,

and are unseen at training time.

To evaluate the applicability of MIL to music, we use

the data from our MajorMiner game [10]. The game has

collected approximately 12,000 clip-level descriptions of ap-

proximately 2,200 clips from many different tracks, albums,

and artists. The most popular descriptions have been applied

to hundreds of clips, and there are 43 tags that have been

applied to at least 35 clips. Previous authors have generally

used datasets that were labeled at the bag level, making it

difficult to evaluate instance-level classification. Sometimes

a subset of the data was laboriously annotated to allow the

evaluation of instance-level classification. In the MajorMiner

dataset, however, tags are applied directly to clips, making it
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possible to test instance-level classification in both the train-

ing set and a separate test set. By deriving bag tags from

clip tags in the training set, we can directly test the ability

of multiple instance learners to recover metadata at the in-

stance level from the bag level. This derivation adheres to the

MIL formulation, labeling a given bag positive as a positive

example of a tag if any of its clips have been labeled with

that tag. In addition, a held-out test set allows us to evaluate

the generalization of these classifiers to instances outside the

training set.

1.1 Previous work

A number of authors have explored the link between mu-

sic and text. Whitman and Ellis [14] trained a system for

associating music with noun phrases and adjectives using a

collection of reviews from the All Music Guide and Pitchfork

Media. This work was based on the earlier work described

in [15]. More recently, [12] used a naive Bayes classifier

to both annotate and retrieve music based on an association

between the music and text. Eck et al. [7] used boosted

classifiers to identify the top k tags describing a particular

track, training the classifiers on tags that the users of Last.fm

had entered for the track’s artist.

The MIL problem was first formulated for the task of digit

recognition [8], in which a neural network was trained with

the information of whether a given digit was present, but not

where it was present. In this case, the bags were regions in

which the digit was known to be present and the instances

were shifted and windowed sub-regions. Another early ap-

plication of MIL was to the problem of drug discovery [6],

in which the bags were molecules and the instances were

conformations of those molecules.

MIL has also been applied to object detection in images,

in which the bags were images and the instances were either

automatically segmented image regions [5] or automatically

identified interest points [3]. It has been applied to video

classification to match names and faces [16], in which the

instances were (name, face) pairs, the bags were scenes, and

the task was to determine whether a face had any names

associated with it or not. And it has been applied to text

classification [1], in which the bags were documents and the

instances were sentences or paragraphs.

Many learning frameworks have been applied to MIL,

including boosting [13], Markov chain Monte Carlo [3], and

both 1-norm [4] and 2-norm support vector machines [1]. In

this work, we compare the performance of two SVM-based

MIL methods, mi-SVM [1] and MILES [4], on the task of

autotagging 10-second song clips. These two algorithms are

explained in greater detail in the next section.

2 MULTIPLE-INSTANCE LEARNING

The following notation is common to both mi-SVM and

MILES. We denote the ith bag as Bi, of size �i, and the

jth instance in that bag as xij where j ∈ 1 . . . �i. The label

for bag i is Yi ∈ {−1, 1} and the label for instance xij

is yij . The set of positive bag indices is defined as I+ ≡
{i : Yi = 1} and similarly the set of negative bag indices

I− ≡ {i : Yi = −1}. All instances in a negative bag are

negative and a single positive instance in a bag forces the bag

to be positive, meaning that

Yi = max
j

yij . (1)

2.1 The mi-SVM algorithm

The mi-SVM algorithm is the instance-level MIL support

vector machine classifier presented in [1]. Support vector ma-

chines generally maximize the margin around a hyperplane

separating positive from negative examples. In the MIL set-

ting, however, the optimal labeling of the points in positive

bags must be computed as well, creating the following mixed

integer quadratic program (QP)

min
{yij},w,b,ξ

1
2‖w‖

2
2 + C

∑
ij

ξij (2)

subject to ∀i : yij(〈w,xij〉+ b) ≥ 1− ξij

yij ∈ {−1, 1}
ξij ≥ 0

∀i ∈ I+ :
�i∑

j=1

1
2 (yij + 1) ≥ 1

∀i ∈ I− : yij = −1.

Unfortunately, it is difficult to solve this integer program

directly and [1] presents a heuristic means of approximating

it that converges to a local optimum. This heuristic solves the

standard SVM quadratic program with the labels fixed, and

then uses the solution of the QP to impute the missing labels

for instances in positive bags. This alternation continues

until the labels no longer change. The instance labels are

initialized from the bag labels, so that all instances in positive

bags are initially labeled positive and all instances in negative

bags are initially (and subsequently) labeled negative.

The number of iterations required for convergence de-

pended on the number of instances in each bag, but was

generally on the order of 10-20. We use the dual domain for-

mulation of the standard SVM QP so that a nonlinear kernel

could be used to define the similarity between instances; in

particular, we used the radial basis function (RBF) kernel. In

this dual domain, the classifier is a linear combination of a

hopefully sparse subset of the training instances, the support

vectors.

2.2 The MILES algorithm

Another SVM-based multiple-instance learner is Multiple-

Instance Learning via Embedded Instance Selection (MILES)
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[4]. While MILES is mainly a bag classifier, it is also able

to derive classifications for instances. Classification with

MILES proceeds in three steps. In the first step, bags are

projected into a large feature space by computing the similar-

ity between each bag and all of the training instances. The

similarity between a bag and an instance is defined as the

maximum similarity between any of the instances in that bag

and the instance in question,

K(Bi,x) ≡ max
k∈1...�i

K(xik,x). (3)

The feature vector for one bag is then

mi ≡ [K(Bi,x11) . . . K(Bi,xN�N
)]T . (4)

In the second step, a 1-norm support vector machine [2]

simultaneously learns a classifier and selects discriminative

“features,” i.e. instances. The 1-norm SVM solves the follow-

ing linear program

min
w,b,ξ

‖w‖1 + Cμ
∑
i∈I+

ξi + C(1− μ)
∑
i∈I−

ξi (5)

subject to ∀i : Yi(〈w,mi〉+ b) ≥ 1− ξi

ξi ≥ 0.

This optimization can be solved as written in the primal do-

main by representing w as the difference of two non-negative

vectors. The �1-norm in the objective function encourages

sparsity in the elements of w forcing many of them to 0.

Since w multiplies instance-similarities, only the instances

corresponding to nonzero elements of w affect the classifi-

cation of new bags. These instances can be considered the

support vectors in this case. Thus, the �1 SVM is also sparse

in its selection of instances.

In the third step, classifications of some of the instances

are derived from the bag classifications. There is one instance

in every bag selected by (3) as the closest to each support

vector. A bag’s classification is not affected by instances that

are not the closest to any support vector, and those instances

can be ignored. Any remaining instance that contributes

more than a threshold amount to the classification of the bag

is considered to be that class itself. We treat unclassified

instances as negatively classified even though [4] allows

instances to remain unclassified.

While MILES has a number of parameters that need to

be tuned, we found its performance quite consistent across a

wide range of parameter settings. The μ parameter controls

the penalty for misclassifying an instance from a positive

bag versus misclassifying an instance from a negative bag.

We found it to have little effect in our experiments except

when within 10−4 of 1, so we kept it at 0.5. The C parameter

controls the trade-off between increasing the margin and

violating class constraints. We found that it could affect

performance when it was small and determined that a value of

10 worked well. The σ parameters is the standard deviation

of the RBF kernel. With feature vectors of unit norm, as

described in the next section, σ = 1 worked well. Similarly,

mi-SVM has C and σ parameters for which C = 1 and σ = 1
worked well. All of these parameters were tuned on a subset

of the tags using different train/test breakdowns of the artists

from our main experiments.

3 MUSICAL FEATURES

We use two types of features to describe musical audio. The

spectral features come from our earlier work [9] and capture

timbral aspects of the music related to instrumentation and

production quality. The temporal features are novel, and

summarize the beat, tempo, and rhythmic complexity of the

music in four different frequency bands. All of these features

are calculated on 10-second long clips of songs.

The temporal features are similar to those described in

[11]. They are calculated on the magnitude of the Mel spec-

trogram, including frequencies from 50 Hz to 10,000 Hz,

using a window size of 25 ms and a hop size of 10 ms.

The mel bands are combined into four large bands at low,

low-mid, high-mid, and high frequencies giving the total

magnitude in each band over time. The bands are windowed

and their Fourier transforms are taken, from which the mag-

nitude of the 0-10 Hz modulation frequencies are kept. The

DCT of these magnitudes is then taken and the bottom 50

coefficients of this envelope cepstrum are kept for each band.

The four bands’ vectors are then stacked to form the final,

200-dimensional feature vector.

The spectral features consist of the mean and unwrapped

covariance of a clip’s mel-frequency cepstral coefficients

(MFCCs). The MFCCs are calculated from the mel spec-

trogram used in the temporal features above. Since the

on-diagonal variance terms are strictly positive, their log

is taken to make their distribution more Gaussian. We use

18-dimensional MFCCs, and only keep the unique elements

of the covariance matrix, for a total of 189 dimensions.

The 0-th cepstral coefficient, the DC modulation fre-

quency, and the on-diagonal variance terms tend to be much

larger than other features. We therefore scale each feature to

be zero-mean and unit-variance across the set of all instances

to make the features more comparable to each other. This

scaling improves classification because those dimensions that

are biggest are generally not the most discriminative. After

the feature dimensions are scaled, the temporal features are

multiplied by 1√
2

, a value that was determined empirically to

balance the spectral and temporal features well. Finally, the

feature vector for each clip is normalized to have unit length

to avoid problems with degenerate clips.

4 EXPERIMENTS

The data used in our experiments come from our MajorMiner

game [10]. In this game, players label 10-second clips with
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arbitrary textual descriptions called tags, scoring points when

others describe the same clips with the same tags. The rules

of the game encourage players to use original, yet relevant

tags. In our experiments, we only include tags that have

been verified by at least two different players on at least 35

clips, ensuring that the concept is relevant overall and to the

individual clips. There are 43 such tags and they have been

verified approximately 9000 times in total on approximately

2200 clips selected at random from 3900 tracks.

Note that these data do not include strict negative labels.

While many clips are tagged rock, none are tagged not rock.

Frequently, however, a clip will be tagged many times with-

out being tagged rock. We take this as an indication that

rock does not apply to that clip. More specifically, a negative

example of a particular tag is a clip on which another tag has

been verified, but the tag in question has not.

Certain data-handling issues required extra consideration.

Before using the tags in our experiments, we performed a

number of normalization steps on them, eliminating varia-

tions in punctuation, spelling, and suffixing. Around 45 silent

clips were culled from the dataset and the last clip in each

track was also discarded, as the irregular length of these clips

can cause problems and they are generally silent. Finally, a

number of tracks came from albums where the artist was in-

dicated as “Various Artists” and “Original Soundtrack.” We

excluded these clips from any bags used in our experiments,

but allowed them in the instance-level test set, where bags

were ignored anyway.

4.1 Procedure

The experiment was five repetitions of a two-fold cross-

validation procedure, where artists were assigned to one

fold or the other to make sure tags were learned independent

of artists. Each tag was evaluated independently as a binary

classification task. To create the training set for a particular

tag the positive bags with the most instances of that tag were

selected from the training fold until either they were all se-

lected or 400 instances had been selected. The negative bags

with the most instances were then selected until there were

at most as many negative instances as positive instances. On

average, the selected track, album, and artist bags contained

2.47, 4.44, and 8.17 instances, respectively. In the training

set, bag labels Yi were calculated from instance labels yij

according to (1).

As an illustration, to create the training and testing datasets

for the tag saxophone at the artist granularity, all of the artists

with any clips tagged saxophone are considered positive bags.

So Sonny Rollins would be one positive bag, John Coltrane

another, etc. All artists without any clips tagged saxophone
are considered negative bags. To create the training set, the

positive artists with the most labeled clips are selected, fol-

lowed by the negative artists with the most labeled clips.

In addition to mi-SVM and MILES, two control algo-

rithms were included in the evaluation. The first, referred to

as the naı̈ve approach, assumes that bag labels apply to all of

the instances in a bag and trains an instance-labeling SVM

on those labels directly. The second control, referred to as

the cheating approach, trains on instance labels directly and

serves as a ceiling on performance for instance classification

in the training set. Since there are many negative instances

in positive bags and this algorithm needs to train on an equal

number of positive and negative examples, it only selects a

subset of the negative instances to train on. This selection

causes its slightly imperfect performance.

The maximum number of positive instances, 400, was

chosen to give a reasonable running time for all algorithms.

With 400 labeled instances in positive bags, the largest data

sets would have 800 examples. Training an individual 1-

norm or 2-norm SVM on this many examples takes only a

few seconds, but there were about 5000 SVMs to be trained

over 10 repetitions, on 43 tags, with 3 different bag sizes

for each of 4 algorithms. The slowest algorithm was mi-

SVM, which took 6.7 hours to run on one Intel Xeon 1.89

MHz CPU. Second was the naı̈ve approach, which took 67

minutes, followed by MILES at 42 minutes and the cheating

approach at 24 minutes.

We evaluate the classifiers on two different tasks. The

first, is the recovery of instance labels in the training set.

Since the classifier is trained only on bag labels and not

directly on instance labels, this task is not trivial. To fix a

performance baseline of 0.5, accuracy is evaluated on an

equal number of positive and negative instances from the

training bags. To increase the precision of the measurement,

the maximum number of examples are selected while still

maintaining balance, although this causes the variance of the

estimates to differ between classes.

While recovering instance labels is one useful application

of MIL, it does not allow the classifiers’ performance on

novel instances to be measured accurately, because of the

partial supervision. We instead measure this using instances

from the held-out test set, ignoring any notion of bags. To

facilitate comparison between the accuracy of classifying

each tag, the same number of test examples are selected for

each tag, namely 11 positive and 11 negative (setting the

baseline accuracy again to 0.5). When combined across two

cross validation folds and five repetitions of the experiment,

each class is tested on 220 examples. Since MILES classifies

bags before classifying instances in those bags, each test

point is presented to MILES in its own bag.

5 RESULTS

The overall classification accuracy of the various algorithms

can be seen in Table 1. On the training instances, the cheating

algorithm was the most accurate, followed by mi-SVM, the

naı̈ve algorithm, and MILES. Since the cheating algorithm

is an upper bound on training set accuracy, mi-SVM is the

most accurate realistic classifier, if only by a small margin.
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Training set Test set

Trk Alb Art Trk Alb Art

Cheat 85.9 83.9 82.6 64.7 65.7 66.2

mi-SVM 87.0 80.9 78.0 66.8 67.8 65.4

Naı̈ve 85.0 79.5 77.3 67.4 67.7 66.0

MILES 81.2 73.2 70.0 51.7 50.9 50.6

Table 1. Overall classification accuracy percentages on la-

beled points in the train and test sets at track, album, and

artist granularities.

The mi-SVM algorithm outperformed the naı̈ve algorithm

because the naı̈ve algorithm generally returned the bag labels

for the instances, while mi-SVM was able to identify some

of the negative instances in positive bags.

On the test data, mi-SVM and the naı̈ve algorithm per-

formed equally well, followed by the cheating algorithm,

and MILES. The inversion of the cheating and naı̈ve algo-

rithms on the test set was unexpected. It could possibly be

caused by the naı̈ve algorithm’s ability to use more of the

training examples presented to it, or it could indicate that the

instance labels do contain some amount of noise that the bag

labels smooth over. Such noise could be due to the lack of

unambiguous negative labels in the MajorMiner data.

MILES was not very accurate on the test set. It was

reasonably accurate on tags with many examples and small

training bags, but otherwise it classified all test instances

identically, resulting in an accuracy of 0.5. This might be due

to a mismatch between the size of the bags in the training

and test sets, since the test “bags” were all single instances.

In experiments where MILES was tested on bags of a similar

size to those it was trained on, its test accuracy more closely

followed its training accuracy. In these experiments, MILES

seemed to be able to rank test bags well, even when they

differed in size from the training set, possibly indicating

that the bias, b, was learned incorrectly. In the training set,

its bag classifications were almost always correct, while its

instance classifications suffered slightly from over-sparsity.

In particular, as bag size increased, a smaller proportion of

instances in the bag contributed to its classification, leaving

all of the others classified as negative by default.

As expected, classification was more accurate on instances

in training sets than in test sets. This indicates that even

though training instances might not be labeled individually,

bag labels still convey useful information. Also as expected,

accuracy generally decreases for coarser-granularity bags,

more so for training instances than for testing instances. This

indicates that larger bags, while still allowing the training of

classifiers, constrain the labels of training instances less.

In Figure 1, results on the test set are broken down by

tag for each algorithm and bag size. This figure reveals the

differences between the tags. Some tags perform better using

track bags, while others perform better using artist or album

bags. These differences could indicate the granularities at

which each tag is appropriate. In particular, one can compare

the performance of the naı̈ve algorithm or mi-SVM trained

on different bag granularities to determine if one granularity

is significantly different from another.

The naı̈ve algorithm trained on artist bags make the as-

sumption that a tag that is appropriate for some of an artist’s

clips is also appropriate for the rest of them. The accuracy of

the resulting classifier, relative to other granularities, should

indicate how well this assumption holds. Since mi-SVM

is initialized with the same labels as the naı̈ve algorithm, a

similar property might hold. We have found some evidence

of this phenomenon in our results, but not enough to conclu-

sively prove its existence. For example, the tags saxophone,

synth, piano, soft, and vocal should be most relevant at the

track level, and indeed, they train mi-SVM classifiers that

are much better for track bags than for artist bags. A coun-

terexample is provided by trumpet, however, which is better

classified by mi-SVM trained on artist bags.

6 CONCLUSION

We have formulated a number of music information related

multiple-instance learning tasks and evaluated the mi-SVM

and MILES algorithms on them. By using clip-level tags

to derive tags at the track, album, and artist granularities,

we have created three different ground truth datasets. These

datasets are suitable for testing the learners’ ability both to

recover the original tags for clips in the training set and to tag

clips in a held-out test set. We found that mi-SVM was the

most accurate in recovering tags in the training set, followed

by the naı̈ve approach of assuming bag tags applied to all

instances, and then MILES. In predicting tags for test clips,

we found that mi-SVM and the naı̈ve approach were quite

comparable, and both were much more accurate than MILES.

While these results are promising, many multiple-instance

learners have been formulated and it is possible that another

one is more appropriate to the task of predicting tags.

6.1 Future work

The most straightforward extension of this work is to larger

datasets with more tags and more labeled examples. It should

be possible to evaluate the refinement of tags from the artist

and album level to the track level, so data from sources like

Last.fm, the All Music Guide, and Pandora could be used

in the evaluation of MIL. It would also be interesting to

qualitatively examine the results of refining labels from these

data sources down to the clip level. Many other tasks in music

information retrieval could also benefit from the decreased

cost of collecting training data within the MIL framework,

including polyphonic transcription, singing voice detection,

structure finding, and instrument identification.
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Figure 1. Classification accuracy on the test set, broken down by tag. Each pane is an algorithm, and each style of dot is a

different bag granularity. Dots get larger and lighter for coarser granularities: track, album, artist. The tags are ordered by the

accuracy of mi-SVM with track bags. For every dot, N=220, meaning that a difference of around 0.06 is statistically significant.
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