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ABSTRACT

Sound textures may be defined as sounds whose character de-
pends on statistical properties as much as the specific details
of each individually-perceived event. Recent work has de-
vised a set of statistics that, when synthetically imposed, al-
low listeners to identify a wide range of environmental sound
textures. In this work, we investigate using these statistics
for automatic classification of a set of environmental sound
classes defined over a set of web videos depicting “multime-
dia events”. We show that the texture statistics perform as
well as our best conventional statistics (based on MFCC co-
variance). We further examine the relative contributions of
the different statistics, showing the importance of modulation
spectra and cross-band envelope correlations.

Index Terms— Sound textures, soundtrack classification,
environmental sound.

1. INTRODUCTION

Sound textures, as produced by a river, or a crowd, or a he-
licopter, can readily be identified by listeners. But listen-
ers may not be able to distinguish between different excerpts
from a single texture: what has been recognized is something
relating to the overall statistical behavior of the sound, rather
than the precise details. The principles underlying our per-
ception of this statistical structure could be valuable in the
design and construction of automatic content classification,
as textures are common in real-world audio signals. One ap-
plication would be a system to classify web videos as belong-
ing to particular categories of interest, on the basis of their
soundtracks including relevant or tell-tale sound textures.

In [1], sound texture perception was investigated by mea-
suring various statistics in a real-world sound texture, impos-
ing the measured statistics on a noise signal, and then testing
whether the result was perceived to sound like the original.
A number of statistics computed from an auditory subband
analysis were found to allow perceptual identification of a
wide range of natural sound textures. For instance, moments
(the variance, skew, and kurtosis) of the amplitudes in each
subband were found to be important (for capturing sparsity),
as was the correlation between subband envelopes. Subjects

scored better than 80% correct in identifying a 5 second syn-
thesized texture drawn from a pool of 25 classes.

In this paper we investigate whether statistics of this kind
can also be useful in the automatic recognition of environ-
mental sound textures. Our task is to label the soundtracks of
short clips extracted from web videos with a set of 9 broad
labels such as “outdoor-rural”, “indoor-quiet”, “music”, etc.
We compare features modeled after [1] with a conventional
baseline that uses the statistics of Mel-frequency cepstral co-
efficient (MFCC) features and their derivatives.

Prior work on sound textures has investigated different
representations and methods including wavelet trees [2] and
frequency-domain linear prediction [3]. These approaches
have considered perceptual and biological aspects only indi-
rectly, unlike the direct perceptual validation at the basis of
this work. They are also concerned primarily with synthe-
sis, not classification. Environmental sound classification has
been addressed by our earlier work using MFCC statistics [4]
and Markov models [5], among many others [6, 7, 8], but not
with a range of features specifically aimed at sound textures.

Section 2 describes the task and our data in more detail.
Section 3 describes our approach, including the texture fea-
ture set, the baseline MFCC features, and the SVM classifier.
Section 4 reports our results on both feature sets and their
combination. We draw conclusions in section 5.

2. TASK AND DATA

The soundtrack classification system was developed as part
of a system for the TRECVID 2010 Multimedia Event De-
tection task [9]. This evaluation is aimed at systems able to
detect complex events in videos, using the specific examples
of “Making a cake”, “Batting a run”, and “Assembling a shel-
ter”. The task includes a development set of 1746 videos,
including 50 positive examples of each class. These videos
come from a range of public video websites, and span the
styles and qualities of video typically encountered online.

As part of a wider effort to detect these events based on
mid-level semantic classes, this project was to develop a set
of soundtrack classifiers trained on specific labels applied to
the video data. To this end, a set of 9 semantic properties
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Fig. 1. Block diagram of the texture feature calculation.

was defined, as listed in table 1. To create training data for
these classifiers, each of 534 development set videos was seg-
mented into nonoverlapping 10 s clips. Each of the resulting
6630 clips was manually annotated with the nine attributes.
Because clips were annotated separately, different clips from
the same video could have different labels.

3. APPROACH

3.1. Sound texture features

The sound texture features are calculated as shown in figure
1. The input sound file is first put through a frequency-
dependent automatic gain control to reduce the impact of
different recording conditions and channels [10]. Temporal
smoothing has a time constant of 0.5 s, and spectral smooth-
ing is over a sliding 1 mel window. The signal is then broken
into 18 subbands on a mel scale to simulate an auditory fil-
terbank; in practice, this is achieved by combining the bin
magnitudes of a short-time Fourier transform (STFT) operat-
ing with a 32 ms window and 16 ms hop time. Each channel’s
log-magnitudes are accumulated over 8.2 s (256 of the 16 ms
frames); after discarding values more than 40 dB below the
peak, the histogram of magnitudes is described by its first

Table 1. The nine labels applied to each 10 s segment from
the TRECVID MED development set. Note that the first four
classes are mutually exclusive, i.e., each clip carries at most
one of these labels. Each video is divided into multiple 10 s
clips.

Concept # videos # clips
Outdoor - rural 278 1387
Outdoor - urban 146 570
Indoor - quiet 225 1905
Indoor - noisy 265 1735
Dubbed audio 249 2074
Intelligible speech 333 2882
Music 249 2538
Cheering 151 416
Clapping 99 261

four moments – the mean, variance, skew, and kurtosis – to
give the first block of 18× 4 features.

The sequence of 256 subband magnitudes is also Fourier
transformed to obtain a modulation spectrum. The magni-
tudes are collected into six octave-wide modulation bands
spanning 0.5-1 Hz, 1-2 Hz, 2-4 Hz, 4-8 Hz, 8-16 Hz, and
16 Hz to the Nyquist rate of 32 Hz. This constitutes a sec-
ond block of 18 × 6 features. Finally, the normalized corre-
lations between all the subband envelopes are analyzed. This
18 × 18 matrix is represented by its first 12 diagonals, such
that correlations between spectrally distant channels are not
included (we also exclude the leading diagonal, which is iden-
tically 1) to give a further 17 + 16 + . . . + 6 = 138 dimen-
sions. Thus, each 8.2 s chunk of sound is transformed into
18× 4+18× 6+138 = 318 dimensions. For longer sounds,
the analysis is repeated every 4.1 s, although the clips in this
study were each just 10 s long, so were analyzed as a single
frame.

These features follow the results of [1], who found that
synthetic sounds shaped to match such statistics of an original
sound were generally recognizable to listeners, with recog-
nition improving as more statistics were matched. Using
subband histogram moments was superior to simply match-
ing the energy in each subband, and cross-band correlations
and subband modulation spectra further improved the real-
ism and recognizability of the synthesis. Subband histogram
moments help distinguish between sound textures that have
fairly steady power in a subband (like classic filtered noise)
versus power that has a few, sparse, large values (large vari-
ance, skew and kurtosis, as in a crackling fire). The mod-
ulation spectrum helps to capture the characteristic rhythm
and smoothness of these variations within each subband (e.g.
fast and rough in clapping vs. slow and smooth in seawash).
Cross-band correlations can identify subbands that exhibit
synchronized energy maxima (e.g., crackling, speech), as dis-
tinct from independent variations in each band (many water
sounds).

3.2. MFCC features

Our baseline system models the second-order statistics of
common MFCC features, calculated over 32 ms windows on
a 16 ms grid. We used 20-dimensional cepstra calculated
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Fig. 2. Block diagram of the MFCC feature calculation.

from a 40-band mel spectrum. The feature calculation is as
illustrated in figure 2; to include some information on tempo-
ral structure, we calculate delta and double-delta coefficients
(over a 9 frame window) to give a total of 60 dimensions
at each time frame. The entire clip is then described by the
mean and covariance of these feature vectors; the 60 × 60
covariance matrix is represented by its leading diagonal and
next 6 diagonals, giving 60 + 59 + · · · + 55 = 399 unique
values, and each of these is treated as a separate clip-level
feature dimension. Thus, each 10 s clip is represented by
60 + 399 = 459 dimensions. These numbers, as well as
those of the texture features, were approximately optimized
through trial and error.

3.3. SVM classifier

To build the audio classifiers, we take feature vectors from
clips that have been manually labeled as reflecting a par-
ticular class from table 1 (the positive examples), a second
set that do not belong to the class (negative examples), and
train the parameters of a generic discriminative classifier.
We use support vector machines (SVMs) with a Gaussian
kernel. Such classifiers calculate the Euclidean distance be-
tween all training examples (positive and negative), scale
them with a parameter γ, and optimize a decision plane in the
implied infinite-dimensional space, trading misclassifications
for “margin width” according to a weighting parameter C.

The tolerance of misclassification limits the success of
SVMs trained with a large imbalance between positive and
negative examples. To avoid this, we took the simple measure
of discarding examples from the larger class (usually negative
examples) until we had a number equal to the smaller class.
This also meant that we could evaluate the performance of
all classifiers by accuracy, where random performance would
give an accuracy of 50%.

To set the parameters γ andC, we performed a coarse grid
search, with the classifier trained on half the positive and neg-
ative examples, then tested on the other half, and then trained
and tested again with training and test sets interchanged (2
way cross-validation). We were careful to assign all the clips
cut from any single video to the same cross-validation half, to
avoid a test set containing clips with properties unrealistically
similar to items in the training set.

The parameters giving the best accuracy on cross-validation
were retained. This cross-validation accuracy is also the per-
formance figure we report below; although this is an over-
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of both classifiers. Error bars show the standard deviation of
results from 20 runs with different random train/test splits.
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Fig. 4. Classification accuracy by class for various combi-
nations of the texture feature subblocks. M = mean subband
energies; MVSK = all four subband moments; ms = modula-
tion spectrum; cbc = cross-band correlations.

estimate of the performance on truly unseen test data, it is
sufficient for the comparison between different systems and
configurations.

4. RESULTS

Figure 3 shows the overall accuracy for the nine classifiers,
comparing the baseline (MFCC) system, the system based
on the full set of texture features, and a combination system
formed by averaging the distance-to-margin estimates of both
systems prior to making the final classification. (This scheme
interprets the distance-to-margin coming out of the SVM as
a kind of confidence or mapped posterior). We see a wide
range of performance across classes, with relatively poor per-
formance for the classes with the fewest training examples
(“Urban”, “Cheer”, “Clap”), and strong performance for the
classes with clear acoustic properties (“Speech”, “Music”),
as well as for classes strongly correlated with these attributes
(“Quiet” frequently occurs with “Speech”, and “Dubbed”
frequently occurs with “Music”). The MFCC and texture
systems have very similar average performance, although
the texture system appears to have the edge for “Quiet” and
“Rural”, and the MFCC system is superior for “Urban”,
“Noisy”, “Cheer”, and “Clap”. The simple margin com-
bination scheme outperforms either system alone in every
case, giving an overall accuracy averaged over all classes



of 75.5 ± 0.4%, versus 73.8 ± 0.5% for the baseline, and
72.5± 0.5% for the texture system.

Figure 4 provides some additional insight into the tex-
ture features by showing the accuracies by class for systems
built from different subsets of the texture feature blocks. Us-
ing higher order moments (i.e., variance, skew, and kurtosis)
gives a clear advantage over subband mean alone – although
most of this gain is provided by just the variance. Modu-
lation spectra and cross-band correlations showed large dif-
ferences between classes, but performed roughly the same
as each other, and a little worse than the moments, when
averaged across all classes. Combining them with the mo-
ments gave a significant gain for all classes (except the dif-
ficult “Urban” case), indicating complementary information.
Interestingly, modulation spectra are not particularly useful
for “Speech”, but cross-band correlations are.

5. CONCLUSIONS

We have shown that the perceptually important statistics in
sound textures are a useful basis for general-purpose sound-
track classification. They can be used to recognize foreground
sound categories like speech, music, and clapping, as well
as more loosely-defined contexts such as outdoor-rural, and
indoor-noisy. Classifiers based on texture statistics are able
to achieve accuracies very similar to those based on conven-
tional MFCC features, and the two approaches can be easily
and profitably combined.

The similarity in performance between MFCC and tex-
ture features raises the question as to whether they are truly
modeling different aspects of the sound. Apart from the DCT
involved in cepstral calculation, the MFCC features resem-
ble the mean and variance moments from the texture features.
The MFCC features also measure the covariance between dif-
ferent feature dimensions, something represented separately
by cross-band correlations in texture features. The deltas and
double-deltas in the MFCCs give a limited view of the tem-
poral behavior of each dimension, whereas the modulation
spectra in the texture set describe the temporal structure at a
broad range of time scales. This may be behind the benefits
obtained by combining MFCC and texture-based classifiers.

The particular task we have investigated is not the ideal
test for texture statistics, since the categories we sought to dis-
tinguish are not crisply distinguished by texture. A class like
“Indoor-noisy” might consist of restaurant babble or machine
noise without distinguishing between them, even though they
would be perceived as very different textures. On a test of
more precise categorization over a wider range of sounds –
such as recognizing or describing the particular characteris-
tics of a soundtrack – texture features might show a greater
advantage. This will be the focus of our future work, includ-
ing an approach to characterizing soundtracks by their tex-
tural similarity to a large set of reference sound ambiences
obtained from a commercial sound effects library.

6. ACKNOWLEDGMENTS

Many thanks to Yu-Gang Jiang and the other members of
Columbia’s Digital Video MultiMedia lab for providing ac-
cess to the manual labels of the MED data. This work was
supported by a grant from the National Geospatial Intelli-
gence Agency.

7. REFERENCES

[1] Josh H. McDermott, Andrew J. Oxenham, and Eero P.
Simoncelli, “Sound texture synthesis via filter statis-
tics,” in Proc. IEEE WASPAA, Mohonk, 2009, pp. 297–
300.

[2] S. Dubnov, Z. Bar-Joseph, Ran El-Yaniv, D. Lischinski,
and M. Werman, “Synthesizing sound textures through
wavelet tree learning,” IEEE Computer Graphics and
Applications, vol. 22, no. 4, pp. 38–48, Jul/Aug 2002.

[3] Marios Athineos and Daniel P. W. Ellis, “Sound tex-
ture modelling with linear prediction in both time and
frequency domains,” in Proc. IEEE Int. Conf. Acous.,
Speech, and Sig. Proc., 2003, pp. V–648–651.

[4] K. Lee and D.P.W. Ellis, “Audio-based semantic concept
classification for consumer video,” IEEE TASLP, vol.
18, no. 6, pp. 1406–1416, Aug 2010.

[5] Keansub Lee, Daniel P. W. Ellis, and Alexander C.
Loui, “Detecting local semantic concepts in environ-
mental sounds using markov model based clustering,”
in Proc. IEEE ICASSP, Dallas, 2010, pp. 2278–2281.

[6] Lie Lu, Hong-Jiang Zhang, and Stan Z. Li, “Content-
based audio classification and segmentation by using
support vector machines,” Multimedia Systems, vol. 8,
no. 6, pp. 482–492, 04 2003.

[7] A.J. Eronen, V.T. Peltonen, J.T. Tuomi, A.P. Klapuri,
S. Fagerlund, T. Sorsa, G. Lorho, and J. Huopaniemi,
“Audio-based context recognition,” Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 14,
no. 1, pp. 321–329, Jan. 2006.

[8] S. Chu, S. Narayanan, and C.C.J. Kuo, “Environmental
Sound Recognition With Time–Frequency Audio Fea-
tures,” IEEE Trans. Audio, Speech, & Lang. Proc., vol.
17, no. 6, pp. 1142–1158, 2009.

[9] NIST Multimodal Information Group, “2010
TRECVID Multimedia Event Detection track,”
2010, http://www.nist.gov/itl/iad/mig/
med10.cfm.

[10] D. Ellis, “Time-frequency automatic gain control,”
2010, http://labrosa.ee.columbia.edu/
matlab/tf_agc/.



fr
eq

 / 
kH

z
co

ef
fic

ie
nt

1159_10 urban cheer clap

0 2 4 6 8 10
0

4

8

6

2

coefficient

time / s

level / dB

value

1062_60 quiet dubbed speech music

0 2 4 6 8 10

 

 

20 40 60 20 40 60

−2

−1

0

1

2

−40

−20

0

20

20

40

60
MFCC   Mean                   Covariance Mean                   Covariance

Fig. 5. Two example soundtracks along with their MFCC-based representations. The top row shows conventional spectrograms
for each 10 s segment. Below are the 60 element mean vectors (means of the 20 dimensional MFCCs over the entire clip,
as well as their deltas and double-deltas), and the 60 × 60 covariance matrix. (Only a 7-cell-wide strip of the upper-diagonal
nonredundant part of this matrix is used as features, for 399 dimensions). The audio segment on the left consists of cheering and
clapping at a sports event. It is annotated with the labels “outdoor-urban”, “cheering”, and “clapping”. The segment on the right
comes from a 1960s TV commercial for cake mix (containing both music and voice-over) and is annotated as “indoor-quiet”,
“dubbed audio”, “intelligible speech”, and “music”.
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