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Abstract Common evaluation standards are critical to making progress in any
field, but they can also distort research by shifting all the attention to a
limited subset of the problem. Here, we consider the problem of evaluat-
ing algorithms for speech separation and acoustic scene analysis, noting
some weaknesses of existing measures, and making some suggestions for
future evaluations. We take the position that the most relevant ‘ground
truth’ for sound mixture organization is the set of sources perceived by
human listeners, and that best evaluation standards would measure the
machine’s match to this perception at a level abstracted away from the
low-level signal features most often considered in signal processing.
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1. The ASR experience

Quantitative evaluation is an essential and sensitive factor in any area
of technological research. Automatic Speech Recognition (ASR) pro-
vides an instructive example of the benefits and costs of common evalu-
ation standard. Prior to the mid-1980s, speech recognition research was
a confusing and disorganized field, with individual research groups tend-
ing to use idiosyncratic measures that showed their particular systems
in the best light. Widespread frustration at the difficulty of comparing
the achievements of different groups — among researchers and funders
alike — was answered by a series of carefully-designed evaluation tasks
created by the US National Institute of Standards and Technology (Pal-
let, 1985). While the speech material in these tasks has evolved from
highly constrained vocabularies, grammars and speaking styles through
to unconstrained telephone conversations, the principal figure of merit
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has remained the Word Error Rate (WER) — the number of incorrect
word tokens generated by the system as a percentage of the word count
of the ideal transcript — throughout this period.

Over more than 15 years of NIST evaluations, the benefits of the
common evaluation task and single performance measure have been dra-
matic. Standard measures have made it possible to give definitive an-
swers to questions over the relative benefits of different techniques, even
when those differences are small. Since the advent of Gaussian Mix-
ture Model-Hidden Markov Model (GMM-HMM) recognition systems,
it turns out that most ASR improvements have been incremental, rarely
affording an improvement of more than 10% relative, yet we have seen
a compound system improvement of perhaps two orders of magnitude
through the careful and judicious combination of many small enhance-
ments. Accurate and consistent performance measures are crucial to
making this possible.

The disadvantage to this powerful organization of the field around
a common goal and metric comes from the kind of ‘monoculture’ we
see in current speech recognition research. Of the many hundreds of pa-
pers published in speech recognition journals and conference proceedings
each year, the vast majority use same GMM-HMM framework or very
close relatives, and of the dozen or so labs working on large-vocabulary
speech recognition systems and participating in current NIST evalua-
tions, all are using systems that appear identical to a casual observer. If
GMM-HMM systems were obviously the ‘right’” solution, this might be
expected; however, many researchers are uncomfortable with the HMM
framework, but feel obliged to keep working with it because the per-
formance loss incurred by switching to a less mature, less optimized
novel approach would jeopardize the acceptance (and publication) of
their work (Bourlard et al., 1996).

The dominance of a common standard can have other disadvantages.
The universal adoption of WER as the principal performance measure
has led to a focus on transcription tasks and speech-only material to
the neglect of other kinds of signals (including, of particular relevance
to the current volume, many kinds of speech-interference mixtures). A
single style of task and a single performance measure dominating the
field for several decades has resulted in solutions more and more closely
optimized for that one task, and a widening gap between performance
on the focus tasks and other applications, for instance speech mixtures,
that may be equally important in a broad sense but happen not to have
been included in the evaluations.
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Lessons of evaluation

From the example of speech recognition, we can draw the following
lessons:

s Common evaluation tasks (along with the corresponding perfor-
mance metrics) can have a very positive effect on research and
progress in a given field by providing detailed, quantitative an-
swers to questions over the relative merits of different approaches.
In addition to furthering debate, this information makes it easier
for funding sources to support the field, since they can be more
confident that their money is getting results.

m When a single task is defined, and particularly when it bears on
funding and other resource allocation, there will be a great concen-
tration on that task leading to the neglect of similar but distinct
problems. Thus, the task chosen should ideally represent a real
problem with useful applications — so that even in the worst case,
with only that one problem being solved, there is still some valu-
able output from the research.

m Funneling all the effort of a research community into a single,
narrow focus is generally undesirable; one alternative is to define
more than one task and/or more than one performance measure,
to create multiple ‘niches’ supporting several different threads of
research. Making these niches too numerous, however, defeats the
benefits of common evaluation: if each separate group evaluates
their approach with a different measure, benefits of a common
standard are largely lost.

2. Evaluating speech separation

An evaluation task consists of two components: a domain or applica-
tion area, specifying the kinds of material that will be considered (such
as in-car speech, or target-versus-interferer speech); a metric such as
word error rate or signal-to-noise ratio, which implicitly defines the core
nature of the problem to be addressed (recognizing spoken words or
reducing distortion energy respectively). Since certain metrics place ad-
ditional constraints on the domain (such as the availability of isolated
pre-mixture sources), we will first consider the range of metrics that are
available and that have been used in speech separation work.

Metrics can be arranged on an axis of abstraction, from those that
measure the most concrete, literal properties of signals, through to those
concerned with much higher-level, derived properties in the information
extracted from the signals.
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Signal-to-noise ratio

The simplest measure, signal-to-noise ratio (SNR), requires that the
system being measured reconstructs actual waveforms corresponding to
individual sources in a mixture, and that the pre-mixture waveforms of
those sources (the ‘ideal” outputs) are available. SNR is defined as ratio
of the energy of the original target source to the energy of the differ-
ence between original and reconstruction — that is, the energy of a signal
which, when linearly added to the original, would give the reconstruc-
tion. This measure is commonly used for low-level algorithms that have a
good chance at near-perfect separation (such as multi-channel Indepen-
dent Component Analysis (Bell and Sejnowski, 1995), or time-frequency
masked reconstruction (Brown and Cooke, 1994)), and is arguably suffi-
cient: if we are able to reconstruct a signal that (almost) exactly matches
some clean, pre-mixture version, then any other information we wish to
obtain is likely also to be available. However, the problems of SNR are:

m [t requires the original signal for comparison, largely limiting its
use to mixtures that are artificially constructed, rather than those
recorded from real environments.

= Distortions such as fixed phase/time delays or nonuniform gains
across frequency which can have only a small effect on the per-
ceived quality of a reconstructed sound, can have a large negative
effect on SNR.

m The common unit of measurement, energy, has in general only an
indirect relationship to perceived quality. The same amount of
energy will have a widely-varying impact on perceived quality de-
pending on where and how it is placed in time-frequency; this is
particularly significant in the case of speech, where most of the en-
ergy is below 500 Hz, yet very little intelligibility is lost when this
energy is filtered out. Another example of the disconnect between
SNR and perceived quality comes from the psychoacoustic-based
coding used in schemes like ‘MP3’ audio, where a reproduction
with an SNR of under 20 dB can sound essentially perfect because
all the distortion energy has been carefully hidden below the com-
plex masking patterns of the auditory system.

Representation-based metrics

While SNR has the attraction of being applicable to any system that
generates an output waveform, more helpful measures (at least from
the point of view of system development) can be derived directly from



Evaluating Speech Separation Systems )

whatever representation is used within a particular system. Thus, in
Cooke’s original Computational Auditory Scene Analysis (CASA) sys-
tem (Cooke, 1991), an evaluation was performed by comparing the
‘strands’ representations resolved by his system with the representation
generated for each source in isolation, thereby avoiding the need for a
strands-to-sound resynthesis path.

By considering the internal representation, evaluations can also be
made relative to an ‘ideal’ performance that reflects intrinsic limita-
tions of a given approach. Many recent systems are based on time-
frequency (TF) masked refiltering, in which Gabor ‘tiles’ in TF are clas-
sified as target-dominated and selectively resynthesized (Hu and Wang,
2003; Roweis, 2001). Such an approach cannot separate overlapped en-
ergy falling into a single cell, so an SNR ceiling is achieved by an ‘ideal’
mask consisting of all the cells in which target energy is greater than
interference (since including any other cells will increase the distortion
energy, by adding noise, more than it is decreased by reducing the deleted
target). Systems based on these masks can be evaluated by how closely
they approach this ideal mask e.g. by measuring the classification accu-
racy of TF cells. This measure removes the effective weighting of each
cell by its local signal energy in SNR calculation; however, it gives a
disproportionate influence to near-silent TF cells whose ‘ideal’ classifi-
cation will depend on the likely irrelevant noise-floor level in the original
mixture components.

Another analysis possible with masked refiltering systems is the sep-
arate accounting for distortion due to energy deleted from the target,
and due to included portions of the interference (the “energy loss” and
“noise residue” of (Hu and Wang, 2003)). However, we are again faced
by the problem of the perceptual incomparability of energy in different
parts of time-frequency.

Perceptual Models

As indicated above, the inadequacies of SNR have long been apparent
in the active and successful field of audio coding. When the goal is to
satisfy human listeners (e.g. telephony customers or music consumers),
there is no substitute for formal listening tests in which subjects rate
the perceived quality of various algorithms applied to the same mate-
rial. Due to the cost of such evaluations, however, considerable effort
has gone into developing algorithmic estimates such as the ITU stan-
dards for PEAQ and PESQ (Perceptual Evaluation of Audio/Speech
Quality (Thiede et al., 2000)). While these measures also require a pre-
distortion original reference, they make sophisticated efforts to factor out
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perceptually-irrelevant modifications, and their use for the evaluation of
low-level signal-separation systems deserves investigation.

High-level attributes

While perfect signal recovery may be sufficient, it is rarely necessary.
Signal separation is not an end in itself, but a means to some subse-
quent application, be that recognizing the words in some noisy speech,
or even the pleasure of listening to a solo musical performance without
additional instruments. In every case, metrics can be devised to measure
more directly the success of the signal separation stage on the overall
application. When the ultimate task is extracting specific parameters,
such as the times of occurrence of certain events, or perhaps limited
descriptions of such events (such as onset times, pitches, and intensities
in polyphonic music transcription), it is natural to evaluate in terms of
the error in that domain.

By far the most widespread evaluation falling into this category is
word error rate of speech recognition systems for mixed signals. Given
the widespread acceptance of WER as a measure for isolated speech
recognition, it is natural to extend the same metric to conditions of
significant interference, even when substantially different processing is
introduced to address that interference. This approach was taken in one
of the earliest models of auditory scene analysis (Weintraub, 1985), al-
though in that work, as in many subsequent experiments, it was found
that in some cases that the signal separation preprocessing made the er-
ror rate worse than simply feeding the original mixture to an unmodified
recognition engine.

Using signal separation to aid speech recognition requires a careful
match between the separation techniques and the recognition engine:
one example of a well-matched combination highlights the difference be-
tween this and lower-level metrics. In missing-data recognition (Cooke
et al., 2001), the matching between observed signal and learned speech
models is modified to account for limited observability of the target i.e.
that certain dimensions can be missing at different times. Acoustic scene
organization algorithms are then employed to indicate which dimensions
(e.g. TF cells) are reliable correlates of the target speech at each instant
(Barker et al., 2004). This work reports minimal increase in word error
rate in cases when significantly less than half the features are deemed
‘reliable’ — a situation which would likely give a highly-distorted resyn-
thesis, but which still contains plenty of information to recognize the
spoken words largely without ambiguity.
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However, because of the sensitivity of WER measures to the com-
patibility (and, as in (Barker et al., 2004), close functional integration)
between separation algorithm and speech recognizer, this measure is only
appropriate for systems specifically built for this application.

Domains

Among acoustic signal separation tasks, speech mixed with different
kinds of interference is the most popular domain and is our main con-
cern here. The target voice can experience different amounts of spectral
coloration, reverberant smearing, or other distortion, but the main axis
of variation is in the nature of the interference signal. Simplest is Gaus-
sian white noise, which can be made a more relevant masker by filtering
into pink noise (equally energy per octave) or to match some average
speech spectrum. In speech recognition, a common approach is to train
models for the combination of speech-plus-noise, which can be very suc-
cessful for such stationary noise particularly when the absolute level is
constrained; a distinct stage of signal separation is avoided completely.

Real-world sound sources comprise a more challenging form of in-
terference because their impact on the features cannot be predicted so
accurately (i.e. with small variance), although the combination of a
large number of independent sources will tend towards Gaussian noise.
At a given power level, the most difficult interference should be a single
second voice, since the statistical features of the interference are indis-
tinguishable from the target. (In practice, a single voice offers many
opportunities ‘glimpsing’ the target during silent gaps in the interfer-
ence, so a combination of a small number of unsynchronized voices may
achieve greater interference.)

The majority of noisy speech tasks are created artificially by mixing
speech recorded in quiet conditions with different “pure interference”
signals (e.g. (Pearce and Hirsch, 2000)). This approach has the attrac-
tions that the relative levels of speech and noise can be adjusted, the
same speech can be embedded in several different types of noise, and the
clean speech can be used to generate a baseline performance. However, it
is a poor match to reality: there is no guarantee that the synthetic mix-
ture actually resembles something that could ever have been recorded
in a noisy environment, not least because of the Lombard effect, the
reflexive modification of speaking quality employed by humans to over-
come noisy environments (Lane and Tranel, 1971). Other effects such
as reverberation are also frequently ignored in synthetic noise mixtures.

Given the problem identified above of solving only what we test, it
would seem preferable to use real recordings of speech in noisy environ-
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ments as test material. While some data of this kind do exist (Schmidt-
Nielsen et al., 2000), on the whole it is avoided due to the flexibility and
control available with synthetic mixtures as just mentioned: recording a
range of speech material against a range of background noise types and
levels requires, in the worst case, a separate recording for each condition,
rather than factorized combinations of a few base recordings.

Another problem with real-world recordings is the availability of ground-
truth descriptions. If we artificially mix a clean voice signal against a
noisy background, we may hope that our speech separation algorithms
will recreate the original clean speech; if the noisy speech is all we have,
how can we even judge the quality of the resynthesis? I would argue,
however, that this assumption that the pre-mixture original represents
the unique best output we could hope for is in fact dodging the more
difficult, but more important, question of deciding what we really want.
If the purpose of the algorithm is to enhance noisy speech for a person
to listen to, then the appropriate metric is subjective quality rating,
not similarity to an original signal which may not, in fact, match the
impression of the source speech in the mind of the listener.

This appeal to subjective sources for ground truth in complex mix-
tures extends beyond speech in noise: In (Ellis, 1996), a computational
auditory scene analysis system that sought to mark the occurrence of
different sound events in complex, real-world ambient sounds was evalu-
ated on its ability to duplicate the consensus results of a set of listeners
given the same task.

3. Conclusions and recommendations

In light of this discussion, we make some recommendations for the
form of a future, widely-applicable evaluation task for speech separation
systems:

s [t should be based on some kind of real-world task, so that if the
worst-case occurs and we end up with solutions applicable only to
this narrow task, they can at least be deployed to some purpose.

m  The data should be real recordings, or possibly synthetic recordings
in which all the possibly relevant aspects of the real recording have
been carefully duplicated.

m  The evaluation ground truth (be it word transcripts, event detec-
tion and descriptions, or other information from the signal) should
originate from human transcribers to get at the ‘subjective’ char-
acter of the sound.
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m  As this implies, the domain of comparison should be in terms of
high-level information and attributes, rather than low-level com-
parisons against some ideal waveform.

m If the task represents a real and useful domain, it ought to be
possible to gather comparable human performance on the same
task, so we can accurately measure how well our machines do rel-
ative to the best currently-known listening machine. Ideally, this
would be a task that humans (perhaps impaired populations) find
somewhat difficult, to give the machines a chance to exceed human
performance — although machines that came anywhere close to hu-
man performance on any kind of acoustic scene analysis would be
welcome.

One possible domain is audio recorded in real, multi-party meetings,
and this task has recently begun to attract attention (Yu et al., 1999;
Morgan et al., 2001). Such corpora typically involve significant amounts
of speech overlap, and often have both near- and far-field microphone
recordings; the head-mounted near-field mics provide a kind of ground-
truth reference for the voices picked up by the far-field tabletop mics.

Speech separation is often referred to as the Cocktail-Party problem
(following (Cherry, 1953)), and a room containing multiple simultane-
ous conversations might provide an interesting test domain, one that
would mostly defeat human listeners. Such a party could be staged
with each participant wearing a head-mounted microphone (which can
be inconspicuous) to provide some level of ground-truth. An interesting
corpus along these lines is the Sheffield-ATR Crossword task (Crawford
et al., 1994), which involved two simultaneous conversations with a fifth
participant occasionally involved in both.

A final area is the kind of continuous personal recording proposed
in (Bush, 1945) and investigated in (Clarkson et al., 1998): wearable
microphones and miniature hard-disk recorders can easily make complete
records of a user’s acoustic environment, but to allow any kind of useful
retrieval from hundreds of hours of such recordings requires automatic
analysis of which acoustic source separation will be an important part.

In conclusion, insights from speech recognition and elsewhere show
that a common evaluation task is critical to the future progress and sup-
port of speech separation research. The form and nature of such a task,
however, is far from clear, not least because there is little consensus on
the real purpose or ultimate application for speech separation technolo-
gies. We favor a task firmly embedded in real-world scenario, and an
evaluation metric that reflects subjective information extraction rather
than an objective, but arbitrary, low-level ideal.
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