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Abstract—While current approaches for audiovisual data
segmentation and classification are mostly focused on visual cues,
audio signals may actually play a more important role in content
parsing for many applications. An approach to automatic segmen-
tation and classification of audiovisual data based on audio content
analysis is proposed. The audio signal from movies or TV programs
is segmented and classified into basic types such as speech, music,
song, environmental sound, speech with music background, envi-
ronmental sound with music background, silence, etc. Simple audio
features including the energy function, the average zero-crossing
rate, the fundamental frequency, and the spectral peak tracks
are extracted to ensure the feasibility of real-time processing. A
heuristic rule-based procedure is proposed to segment and classify
audio signals and built upon morphological and statistical analysis
of the time-varying functions of these audio features. Experimental
results show that the proposed scheme achieves an accuracy rate of
more than 90% in audio classification.

Index Terms—Audio analysis, audio indexing, audio segmen-
tation, audiovisual content parsing, information filtering and
retrieval, multimedia database management.

I. INTRODUCTION

T HE task of automatic segmentation, indexing, and retrieval
of audiovisual data has important applications in profes-

sional media production, audiovisual archive management, ed-
ucation, entertainment, surveillance, and so on. For example, a
vast amount of audiovisual material has been archived in televi-
sion and film databases. If these data can be properly segmented
and indexed, it will facilitate the retrieval of desired video seg-
ments for the editing of a documentary or an advertisement
video clip. To give another example, in audiovisual libraries
or family entertainment applications, it will be convenient to
users if they are able to retrieve and watch video segments of
their interest. As the volume of the available material becomes
huge, manual segmentation and indexing is impossible. Auto-
matic segmentation and indexing through computer processing
based on multimedia content analysis is clearly the trend.

Current approaches for audiovisual data segmentation and
indexing are mostly focused on visual cues such as color his-
togram differences, motion vectors, and keyframes [1]–[3]. In
contrast, the accompanying audio signal receives relatively little
attention. There is however a significant amount of information
contained in the continuous flow of audio data which may often
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represent the theme in a simpler fashion than the pictorial part.
For instance, all video scenes of gun fight should include the
sound of shooting or explosion, while the image content may
vary a lot from one video clip to another. In the beginning of
the movie “Washington Square,” there is a segment which is of
several minutes long, showing buildings, streets, and people of a
neighborhood. There are many different shots involved, but the
continuous accompanying music indicates that they are actually
within one audio scene. Moreover, the speech information con-
tained in audio signals is usually critical in identifying the theme
of the video segment. By only listening to the dialog in a seg-
ment, it is usually enough for us to understand what it is about.
However, a viewer can be easily lost by watching pictures only.
Thus, it is fair to say that the audio signal may actually play a
primary role in content parsing of audiovisual data.

We have been working on the integration of audio and vi-
sual information for online video indexing and annotation. The
first step is to conduct a segmentation of the video sequence
into semantic scenes based on audio content analysis. We call
such a segmented unit as “audio scene,” and index it as pure
speech, pure music, song, speech with music background, en-
vironmental sound with music background, silence, etc. based
on our audio classification algorithms. Then, further segmen-
tation of audio scenes into visual shots will be done according
to visual cues, and keyframes will be extracted from each shot
to give the visual index. The combination of audio and visual
indexing should provide a great help to users in retrieving and
browsing audiovisual segments of their interest from a movie
or a TV program. For example, to retrieve “segments of songs
performed by Michael Jackson” may be achieved by searching
for audio index of “song” and keyframes of “Michael Jackson.”

In this paper, we focus on the problem of segmenting and clas-
sifying accompanying audio signals in audiovisual data based
on audio content analysis. The paper is organized as follows. Ex-
isting work on audio content analysis is reviewed in Section II.
An overview of the proposed system and major contributions of
this research is presented in Section III. The computation and
properties of audio features used in this work are analyzed in
Section IV. The proposed procedures for the segmentation and
indexing of audio stream are described in Section V. Experi-
mental results are shown in Section VI. Finally, concluding re-
marks and future research plans are given in Section VII.

II. PREVIOUS WORK ON AUDIO CONTENT ANALYSIS

Existing work on audio content analysis is quite limited and
still at a preliminary stage. Current researches can be generally
categorized into the following four directions.

1063–6676/01$10.00 © 2001 IEEE
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1) Audio Segmentation and Classification:One basic
problem in audio segmentation and classification is the dis-
crimination between speech and music, since they are the
two most important types of audio. The approach presented
by Saunders [4] used only the average zero-crossing rate
and the energy features, and applied a simple thresholding
procedure while Scheirer and Slaney [5] proposed to use
thirteen features in the time, frequency, and cepstrum domains,
as well as model based classification methods (MAP, GMM,
kNN, etc.) to achieve a robust performance. Both approaches
reported real-time discrimination of an accuracy rate over
90%. As in general, speech and music have quite different
spectral distribution and temporal changing patterns, it is not
very difficult to reach a relatively high level of discrimination
accuracy. Further classification of audio data may take other
sounds, besides speech and music, into consideration. Wyse
and Smoliar [6] worked on the classification of audio signals
into “music,” “speech,” and “others.” In their work, music was
first detected based on the average length of time in which
peaks exist in a narrow frequency region. Then, speech was
separated out by pitch tracking. This method was developed for
the parsing of news stories. An acoustic segmentation approach
was also proposed by Kimber and Wilcox [7], where audio
recordings were segmented into speech, silence, laughter and
nonspeech sounds. They used cepstral coefficients as features
and the hidden Markov model (HMM) as the classifier. The
method was mainly applied to the segmentation of discussion
recordings in meetings. Research by Pfeifferet al. [8] aimed
at the analysis of the amplitude, frequency and pitch of audio
signals, as well as the simulation of human audio perception so
that results may be used to segment audio data streams and to
recognize music. These features were also used to detect sounds
of shot, cry and explosion which might indicate violence.

2) Content-Based Audio Retrieval:One specific technique
in content-based audio retrieval is query-by-humming, through
which a song is retrieved by humming the tune of it. A typ-
ical system was presented by Ghiaset al. [9] for this purpose.
Foote [10] proposed a music and sound effect retrieval system,
where the Mel-frequency cepstral coefficients (MFCC) were
taken as features, and a tree-structured classifier was built for
retrieval. Since MFCC can not represent the timbre of sounds
properly, this method in general fails to distinguish music and
environmental sounds with different timbre characters. In the
content-based retrieval (CBR) work of Woldet al. [11], statis-
tical values (including means, variances, and autocorrelations)
of several time- and frequency-domain measurements were used
to represent perceptual features like loudness, brightness, band-
width, and pitch. Since merely statistical values were consid-
ered, this method was only suitable for sounds with a single
timbre. An audio retrieval method was proposed by Smithet al.
[12] for searching quickly through broadcast audio to detect and
locate sound segments containing a certain reference template
based on an active search algorithm and histogram modeling of
zero-crossing features. The exact audio segment to be searched
should be knowna priori in this algorithm.

3) Audio Analysis for Video Indexing:In [13] and [14], Liu
et al. applied audio analysis results to the distinction of five
different video scenes: news report, weather report, basketball

game, football game and advertisement. The adopted features
included the silence ratio, the speech ratio and the subband
energy ratio which were extracted from the volume distribution,
the pitch contour and the frequency domain, respectively. The
multilayer neural network (MNN) and the hidden Markov
model (HMM) were used as classifiers. It was shown that,
when using MNN, the method worked well in distinguishing
among reports, games and advertisements, but had difficulty
in classifying the two different types of reports and the two
different kinds of games. While using HMM, the overall accu-
racy rate increased, but there were misclassifications among all
the five sorts of scenes. Liu and Huang [15] also applied the
same set of audio features in distinguishing news reports from
commercials and music in broadcast news programs. A simple
hard threshold classifier and a fuzzy classifier were used. Patel
and Sethi [16] proposed to perform audio characterization on
MPEG compressed data (actually, the subband level data) for
the purpose of video indexing. The audio signal was classified
into dialog, nondialog and silence intervals. Features were
taken from the energy, the pitch, the spectrogram and the
pause rate domains, and organized in a thresholding procedure.
There were somehow quite a few mistakes occurring in the
classification between dialog and nondialog intervals. An
approach to video indexing through music and speech detection
was proposed by Minamiet al. [17], where image processing
techniques were exploited to analyze the spectrogram of
audio signals. Spectral peaks of music were recognized by
applying an edge-detection operator, and speech harmonics
were detected with a comb filter. They also presented two
application systems to demonstrate the indexing method. One
system allowed users to access any frame of video randomly
while the other created condensations of dramas or movies by
excerpting meaningful video segments based on the locations
of music and speech.

4) Integration of Audio and Visual Information for Video Seg-
mentation and Indexing:A new trend for video segmentation
and indexing is to combine audio and visual information in one
framework. This idea was reflected in three recent papers. How-
ever, all audio features adopted were quite primitive ones, and
no delicate procedure of audio feature extraction for the spe-
cific purpose was considered up to now. In the method proposed
by Huanget al. [18], the same set of audio features as used
in [13] were combined with the color and motion information
to detect scene and shot breaks. In the approach presented by
Naphadeet al. [19], subband audio data and color histograms
of one video segment were integrated to form a “Multiject,”
and two variations of the hidden Markov model were used to
index Multijects. Experimental results of detecting the events
of “explosion” and “waterfall” were reported. In the approach
of Boreczky and Wilcox [20], color histogram differences, cep-
stral coefficients of audio data, and motion vectors were used to-
gether with a hidden Markov model approach to segment video
into regions defined by shots, shot boundaries and camera move-
ment within shots.

Another research field which is quite important for audio
content analysis is theAudio Scene Analysis (ASA), which was
named after the classic work of Bregman [21]. The goal of
this field is to understand the way the auditory system and the
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Fig. 1. Automatic segmentation and indexing of audiovisual data based on audio content analysis.

brain of human beings process complex sound environments,
where multiple sources that change independently over time are
present. Brown and Cooke [22] termed the research area of con-
structing computer models to perform auditory source segrega-
tion as computational audio scene analysis (CASA). One ex-
ample is the work by Weintraub [23] who used a dynamic pro-
gramming framework around Licklider’s autocorrelation model
to separate voices of two speakers whose voices interfere in a
single recording. Another example is the system built by Ellis
[24], which aimed to analyze the sound and segregate perceptual
components from noisy sound mixtures such as a “city-street
ambience.” The structured audio in MPEG-4 unifies many ideas
and efforts in this field and provides semantic and symbolic de-
scriptions of audio (the decoder is standardized while mature
techniques for the encoder are still to be developed in the coming
years). A summarization of this work was given by Vercoeet
al. in [25]. This technique is useful for ultra low-bit-rate trans-
mission, flexible synthesis, and perceptually based manipula-
tion and retrieval of sounds.

III. OVERVIEW OF THE PROPOSEDSYSTEM

In this research, we propose a scheme for the automatic seg-
mentation and annotation of audiovisual data based on audio
content analysis. Four kinds of audio features are extracted,
namely, the short-time energy function, the short-time average
zero-crossing rate, the short-time fundamental frequency and
the spectral peak tracks. We perform the morphological and
statistical analysis of temporal curves of these features to re-
veal differences among different types of audio. A rule-based
heuristic procedure is then built to segment and classify audio
signals with these features. The flowchart of this procedure is
illustrated in Fig. 1.

Segment boundaries are first detected by locating abrupt
changes in these short-time features. Then, each segment is
classified to be one of the basic audio types. Silent segments

are distinguished, and nonsilent sounds are separated into
two categories, i.e., with or without music components by
detecting continuous frequency peaks from the power spectrum
of audio signal. Sound segments in the first category are further
classified to be harmonic environmental sound, pure music,
song, speech with music background, or environmental sound
with music background based on the analysis of audio features.
Sound segments in the second category are indexed as pure
speech or one type of the nonharmonic environmental sound.
Finally, a postprocessing step is applied for reducing possible
segmentation errors.

Compared with previous work, there are several distin-
guishing features in the proposed scheme. First, besides
commonly studied audio types such as speech and music in
existing work, we have taken into account hybrid types of
sound which contain more than one kind of audio component.
For example, the speech signal with music background and the
singing of a person are two types of hybrid sound which have
characters of both speech and music. We are able to put these
two kinds of sound in different categories with the proposed
scheme, and their distinction is important in characterizing
audiovisual segments. For example, in documentaries or
commercials, there is often a musical background with speech
of commentary appearing from time to time. It is also common
that clients want to retrieve a segment of video, in which there
is singing of one particular song. There are other kinds of
hybrid sound included in our system, e.g., speech or music
with environmental sounds as the background (where the envi-
ronmental sounds may be treated as noise), and environmental
sounds with music as the background.

Second, we put more emphasis on the distinction of environ-
mental sounds which are often ignored in previous work. Envi-
ronmental sounds, including sound effects, are an important in-
gredient in audiovisual recordings, and their analysis is essential
in many applications such as the post-processing of films. In our
scheme, we separate environmental sounds into six categories
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Fig. 2. Audio waveform and the short-time energy function of a speech segment.

according to their harmony, periodicity, or stability properties.
There are “harmonic and fixed,” “harmonic and stable,” “pe-
riodic or quasiperiodic,” “harmonic and nonharmonic mixed,”
“nonharmonic and stable,” and “nonharmonic and irregular” en-
vironmental sounds.

Third, integrated features are exploited for audio classifica-
tion. For example, short-time features of the energy, the average
zero-crossing rate and the fundamental frequency are effectively
combined in distinguishing speech, music and silence. We use
not only the feature values, but also their change patterns over
the time and the relationships among the three kinds of features.
We also propose a method to extract spectral peak tracks, and
use this feature specifically for the distinction of sound seg-
ments of songs and speech with music background. Further-
more, signal processing techniques are applied for the represen-
tation and classification of the extracted features, including mor-
phological and statistical analysis, the heuristic method, adap-
tive search, and fuzzy logic.

Fourth, although the proposed scheme covers a wide range of
audio types, the complexity is low since selected audio features
are easy to compute and the rule-based indexing procedure
is fast. Most audio features used in this system are short-time
and one-dimensional, which makes online audiovisual data
processing feasible. Among the three short-time features, the
fundamental frequency is the most expensive in computation,
which only requires one 512-point FFT per 100 input samples.
The spectral peak tracking requires a little bit more calculation,
but it only has to be computed under certain conditions.

Finally, the proposed audio segmentation and classification
approach is based on the observation of different types of audio
signals and their physical features, which is generic and model-
free. Consequently, it can be easily applied, as the first step pro-
cessing of digital audiovisual data, to almost any content-based
audiovisual material management system. For example, it may
be used as the tool for online segmentation and indexing of radio
and TV programs. An index table can be generated automati-
cally for each program, and the user is able to choose certain
segments (e.g., those of pure music) to browse. Especially, the
inclusion of a keyframe for each segment in TV programs will
facilitate the retrieval task.

IV. A UDIO FEATURE ANALYSIS

A. Short-Time Energy Function

The short-time energy function of an audio signal is defined
as

(1)

where
discrete time audio signal;

time index of the short-time energy;

rectangle window of length .

It provides a convenient representation of the amplitude varia-
tion over time. By assuming that the audio signal changes rela-
tively slowly within a small interval, we calculate once every
100 samples at an input sampling rate of 11 025 samples/s. We
set the window duration of to be 150 samples so that there
is an overlap between neighboring frames. The audio waveform
of a speech segment and the temporal curve of its short-time en-
ergy function are shown in Fig. 2. Note that the sample index of
the energy curve is at the ratio of 1 : 100 compared to the corre-
sponding time index of the audio signal.

Major reasons for using the short-time energy feature in our
work include

1) for speech signals, it provides a basis for distinguishing
voiced speech components from unvoiced speech com-
ponents because values of for the unvoiced compo-
nents are in general significantly smaller than those of the
voiced components, as can be seen from the peaks and
troughs in the energy curve;

2) it can be used as the measurement to distinguish audible
sounds from silence when the SNR is high;

3) its change pattern over time may reveal the rhythm and
periodicity properties of sound.

B. Short-Time Average Zero-Crossing Rate

For discrete-time signals, a zero-crossing is said to occur if
successive samples have different signs. The rate at which zero-
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Fig. 3. Short-time average zero-crossing rates of four audio signals: (a) speech, (b) piano, (c) chime, and (d) footstep.

crossings occur is a simple measure of the frequency content of
a signal. The short-time average zero-crossing rate is defined as

(2)

where

and is a rectangle window. Temporal curves of the short-
time average zero-crossing rate (ZCR) for several audio sam-
ples are shown in Fig. 3. Similar to the computation of the
short-time energy function, we also choose to compute the ZCR
value at every 100 input samples, and set the window width to
150 samples.

The average zero-crossing rate can be used as another measure
to distinguish between voiced and unvoiced speech signals,
because unvoiced speech components normally have much
higher ZCR values than voiced ones [26]. As shown in Fig. 3(a),
the speech ZCR curve has peaks and troughs from unvoiced and
voiced components, respectively. This results in a large variance
and a wide range of amplitude for the ZCR curve. Note also that
the ZCR curve has a relatively low and stable baseline with high

peaks above it. Comparatively, the ZCR curve of music plotted
in Fig. 3(b) has a much lower variance and average amplitude,
suggesting that the zero-crossing rate of music is normally much
more stable during a certain period of time. ZCR curves of music
generally have irregular waveforms with a changing baseline and
a relatively small range of amplitude. Since environmental audio
consists of sounds of various origins, their ZCR curves can have
very different properties. For example, the zero-crossing rate of
the sound of chime as shown in Fig. 3(c) reveals a continuous
dropof the frequencycentroidover time while thatof the footstep
sound in Fig. 3(d) is rather irregular. We may briefly classify
environmental sounds according to their ZCR curve properties
such as regularity, periodicity, stability and range of amplitude.

C. Short-Time Fundamental Frequency

A harmonic sound consists of a series of major frequency
components including the fundamental frequency and those
which are integer multiples of the fundamental one. With this
concept, we may divide sounds into two categories, i.e., har-
monicandnonharmonicsounds.Thespectraofsoundsgenerated
by trumpet and applause are illustrated in Fig. 4. It is clear that
the former one is harmonic while the latter one is nonharmonic.
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Fig. 4. Spectra of harmonic and nonharmonic sound computed directly with FFT: (a) trumpet and (b) applause.

Fig. 5. Spectra of harmonic and nonharmonic sound generated with the AR model: (a) trumpet and (b) applause.

Whether an audio segment is harmonic or not depends on its
source. Sounds from most musical instruments are harmonic.
The speech signal is a harmonic and nonharmonic mixed
sound, since voiced components are harmonic while unvoiced
components are nonharmonic. Most environmental sounds are
nonharmonic, such as the sounds of applause, footstep, and
explosion. However, there are also examples of sound effect
which are harmonic and stable, such as the sounds of doorbell
and touch-tone; and those which are harmonic and nonharmonic
mixed like laughter and dog bark.

In order to measure the harmony feature of sound, we de-
fine the short-time fundamental frequency (SFuF) as such: when
the sound is harmonic, the SFuF value is equal to the funda-
mental frequency estimated at that instant; and when the sound
is nonharmonic, the SFuF value is set to zero. Although there
are many schemes proposed for fundamental frequency estima-
tion or pitch detection in speech and music analysis [26]–[29]
(it is worthwhile to point out that the fundamental frequency
is a physical measurement while the pitch is rather a percep-
tual term [30]), none of them is perfectly satisfactory for a wide

range of audio signals. As our primary purpose of estimating
the fundamental frequency is to determine the harmonic prop-
erty for all kinds of audio signals, we tend to develop a method
which is efficient and robust, but not necessarily perfectly pre-
cise. In this work, the short-time fundamental frequency is cal-
culated based on peak detection from the spectrum of sound.
The spectrum is generated with autoregressive (AR) model co-
efficients estimated from the autocorrelation of audio signals.
This AR model generated spectrum is a smoothed version of
the frequency representation. Moreover, as the AR model is an
all-pole expression, peaks are prominent in the spectrum. Com-
paring the spectra shown in Fig. 5, which were generated with
the AR model with those computed directly from the FFT of
audio signals as shown in Fig. 4, we can see that detecting
peaks associated with the harmonic frequencies is much easier
in the AR generated spectrum than in the directly computed
one. We choose the order of the AR model to be 40. With this
order, harmonic peaks are remarkable while there are also non-
harmonic peaks appearing. However, compared with harmonic
peaks, nonharmonic ones not only lack a precise harmonic re-
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Fig. 6. Short-time fundamental frequency of audio signals: (a) trumpet, (b) speech, (c) rain, and (d) laugh.

lation among them, but also appear to be less sharp at the max-
imum and of smaller amplitude (i.e., the maximum to minimum
distance of the peak) which is clearly observed in Fig. 5. Thus,
for a sound to be regarded as harmonic, there should be the
greatest-common-divider relation among peaks, and some of the
peaks should be sharp and high enough.

All maxima in the spectrum are detected as potential har-
monic peaks, and the amplitude, the width and the sharpness
of each peak are calculated using morphological analysis. It
is checked among locations of these peaks whether a certain
amount of them have a common divider and at least some of
them have sharpness, amplitude and width values satisfying cer-
tain criteria. If all conditions are met, the SFuF value is esti-
mated as the frequency corresponding to the greatest common
divider of locations of harmonic peaks; otherwise, SFuF is set to
zero. SFuF is computed once every 100 input samples. After the
temporal curve of SFuF is obtained for a segment of a certain
length, there is a postprocessing step in which singular points in
the temporal curve of SFuF are removed to improve the accu-
racy of the SFuF estimation.

Illustrated in Fig. 6 are examples of SFuF curves of sounds.
Shown on the top of each picture is the “zero ratio” of the SFuF
curve for that sound segment, which is defined as the ratio be-
tween the number of samples with a zero SFuF value (i.e., non-
harmonic sound) and the total number of samples in the curve.
One can see that music is in general continuously harmonic.
Also, the fundamental frequency usually changes more slowly
than that of other kinds of sounds, and the SFuF value tends
to concentrate on certain frequency for a short period of time.
Harmonic and nonharmonic components appear alternately in
the SFuF curve of the speech signal, since voiced components
are harmonic and unvoiced components are nonharmonic. The
fundamental frequency of voiced components is normally in the
range of 100–300 Hz. Most environmental sounds are nonhar-
monic with zero ratios over 0.9 such as the sound of rain. An
instance of harmonic and nonharmonic mixed sound effects is
the sound of laughing, in which voiced segments are harmonic,
while intermissions in between as well as transitional parts are
nonharmonic. It has a zero ratio of 0.25 which is similar to that
of the speech segment.
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Fig. 7. Detecting harmonic peaks from power spectrum generated with the AR model parameters for song and speech segments: (a) female song withP = 40

and (b) female speech withP = 80. P is order of the AR model.

D. Spectral Peak Track

Peak tracks in the spectrogram of an audio signal often reveal
characteristics of the type of sound. For example, sounds from
musical instruments normally have spectral peak tracks which
remain at the same frequency level and last for a certain period
of time. Sounds from human voices have harmonic peak tracks
which align tidily in the shape of a comb. Spectral peak tracks in
song segments may exist in a broad range of frequency bands,
and the fundamental frequency ranges from 87 Hz to 784 Hz.
There are relatively long tracks in songs which are stable be-
cause the voice may stay at a certain note for a period of time,
and they are often in a ripple-like shape due to the vibration of
vocal chords. Spectral peak tracks in speech segments normally
lie in lower frequency bands, and are more close to each other
due to the fundamental frequency range of 100–300 Hz. They
also tend to be of shorter length because there are intermissions
between voiced syllables, and may fluctuate slowly because the
pitch may change during the pronunciation of certain syllables.

In this work, we extract spectral peak tracks for the purpose of
characterizing sounds of song and speech. Basically, it is done
by detecting peaks in the power spectrum generated by the AR
model parameters and checking harmonic relations among the
peaks. The range of fundamental frequency of harmonic peaks
under consideration is set to 80 Hz–800 Hz due to the property
of song and speech. With a 512-point FFT, the frequency resolu-
tion should be enough to detect harmonic peaks for such a range
if the order of the AR model is chosen properly. For example,
when , harmonic peaks with a fundamental frequency
higher than 250 Hz can be easily detected, which fits for most
song segments. However, this resolution is not enough for most
male and female speech segments. By experiments, we found
that was normally suitable for female speech signals
(with a pitch at about 150–250 Hz), and male speech signals
might require an order of when the pitch is between
100–150 Hz. Nevertheless, with these higher values of, arti-
fact peaks will appear in the estimated spectra of sounds having
higher fundamental frequencies, and may severely impair the
quality of peak detection in these sounds.

We currently fix the order of AR model at three levels: 40,
80 and 100. The idea is that it should be able to detect harmonic
peaks with one of these orders for sounds of concern. The
procedure to determine the proper order is stated below. If, in the
previous frame of an audio signal, harmonic peaks were detected
from the power spectrum generated with the AR model of order

( may be 40, 80, or 100), we begin to detect harmonic peaks
for the current frame with the spectrum of order. If harmonic
peaks are found in this spectrum, we go on to the next frame.
Otherwise, we try the spectra generated with the other two order
levels. If no harmonic peaks were detected in the previous frame,
we try the three order levels one by one for the current frame until
harmonicpeaksare foundor theconclusionofnoharmonicpeaks
existing is obtained. Harmonic peaks should have harmonic re-
lations among them and satisfy some sharpness, amplitude and
width conditions. Since there are many spurious peaks in the
spectrum generated with or 100, we add the restriction in
such cases that harmonic peaks should align consecutively in the
lower-to-mid frequency bands and the fundamental frequency
should be below 250 Hz based on the features of speech signals.
Also, we apply a confidence level to the detection result when

, which is set to 1 if the detected harmonic peaks satisfy
certain criteria; and set to 0 otherwise. If the confidence level is
1, we proceed to the next signal frame; Otherwise, we attempt to
detect harmonic peaks with a higher resolution (i.e., and

). If no harmonic peaks are detected in these spectra, we come
back to take the result of . Otherwise, we adopt harmonic
peaksdetected inaspectrumwithahigherorder.Harmonicpeaks
detected through the above procedure for two frames of song and
speech signals are shown in Fig. 7, where each detected peak is
marked with a vertical line.

Harmonic peaks are detected once every 100 input samples,
and each signal frame contains 512 samples. The locations of
detected peaks are aligned in the temporal order to form the
spectral peak tracks. In order to correct detection errors, two
post-processing steps are applied to the obtained tracks. The
first step is called “linking,” in which missing points in the
tracks are added to make these tracks complete. This is done
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Fig. 8. Spectrogram and spectral peak tracks of female vocal solo.

by searching for holes (one to three samples wide) in the tracks.
These missing points may result from weak or overlapped har-
monic peaks which are difficult to detect. The second step is
called “cleaning,” which is to remove isolated points that are
out of the line of any track. Spectrograms and spectral peak
tracks estimated with the proposed method for two segments of
song and speech signals are illustrated in Figs. 8 and 9, respec-
tively. The first segment is female vocal solo which contains
seven notes sung as “5-1-6-4-3-1-2.” We can see that the pitch
and the duration of each note are clearly reflected in the detected
peak tracks. Each note lasts for about 0.7–0.8 s. Harmonic tracks
range from the fundamental frequency at about 225–400 Hz up
to 5000 Hz, and are in a ripple-like shape. The second segment is
female speech having music and other noise in the background.
However, the speech signal is dominant in the spectrogram, and
spectral peak tracks are nicely detected despite the interference.
The harmonic peak tracks are shorter than those in the song seg-
ment with a pitch level of 150–250 Hz.

V. SEGMENTATION AND INDEXING OF AUDIO STREAM

A. Detection of Segment Boundaries

For online segmentation of audiovisual data, short-time
values of the energy function, the average zero-crossing rate
and the fundamental frequency are computed on the fly with
incoming audio data. Whenever there is an abrupt change
detected in any of these three features, a segment boundary is
set. For the temporal curve of each feature, there are two ad-
joining sliding windows installed with the average feature value
computed within each window as illustrated in Fig. 10. The
sliding windows proceed together with each newly computed
feature value, and the corresponding average values
and are updated. These two values are compared.
Whenever there is a big difference between them, an abrupt
change is claimed to be detected at the common edge of the
two windows (i.e., the point E). We choose the length of each
window to be 100 feature samples, which corresponds to about
1 s in time with a sampling rate of 11 025 Hz.
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Fig. 9. Spectrogram and spectral peak tracks of female speech with music and noise in the background.

Examples of boundary detection within the temporal curves
of the short-time energy function and the short-time fundamental
frequency are shown in Fig. 11. Since the temporal evolution pat-
tern and the range of amplitudes of these short- time features are
different for speech, music, environmental sound and so on, dra-
maticchangescanbedetectedat theboundariesofdifferentaudio
types by applying statistical analysis to these features.

B. Classification of Each Segment

After segment boundaries are detected, each segment of
sound is classified into one of the basic audio types according
to the procedure as illustrated in Fig. 1. Details about each step
in the classification process are described in the following.

1) Detecting Silence:The first step is to check whether the
audio segment is silence or not. We define “silence” to be a seg-
ment of imperceptible audio, including unnoticeable noise and
very short clicks. The normal way to detect silence is by energy

thresholding. However, it is found that the energy level of some
noise pieces is not lower than that of some music pieces. The
reason that we can hear the music while may not notice the noise
is that the frequency-level of the noise is much lower. Thus,
we use both energy and ZCR measures to detect silence. If the
short-time energy function is continuously lower than a certain
set of thresholds (there may be durations in which the energy
is higher than the threshold, but the durations should be short
enough and far apart from each other), or if most short-time av-
erage zero-crossing rates in the segment are lower than certain
set of thresholds, then the segment is indexed as “silence.”

2) Separating Sounds with/without Music Components:As
observed from movies and video programs, music is an impor-
tant type of audio component frequently appearing, either alone
or as the background of speech or environmental sounds. There-
fore, the nonsilence audio segments are first separated into two
categories: with or without music components, by detecting con-
tinuous and stable frequency peaks from the power spectrum.
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Fig. 10. Setting sliding windows in the temporal curve of audio feature for boundary detection.

Fig. 11. Boundary detection in the temporal curves of (a) short-time energy function and (b) short-time fundamental frequency.

The power spectrum is generated from AR model parame-
ters of order 40, and is calculated once every 400 input sam-
ples. Each signal frame for computing the spectrum contains
512 samples. If there are peaks detected in consecutive power
spectra which stay at about the same frequency level for a cer-
tain period of time, this period of time is indexed as having
music components. To avoid the influence from speech har-
monic peaks or low frequency noise, only spectral peaks above
500 Hz are considered since most music components are in
this range. Signal frames below a certain energy level are also
ignored. An index sequence is generated for each segment of
sound, i.e., the index value is set to 1 if the sound is detected

as having music components at that instant and to 0, otherwise.
The ratio between the number of zeros in an index sequence and
the total number of indices in the sequence can thus be a mea-
surement of the sound segment as having music components or
not (which is called “zero ratio”). The higher the ratio is, the less
music components are contained in the sound. Shown in Fig. 12
are index sequences of several sound segments.

By examining zero ratios of different types of audio, we have
the following observations.

1) Speech:Although the speech signal contains harmonic
components, the frequency peaks change faster and last
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Fig. 12. Index sequences of music components detection in sound segments: (a) pure music, (b) pure speech, (c) speech with music background, and (d) song.

for a shorter time than those in music. Zero ratios for
speech segments are normally above 0.95.

2) Environmental Sound:Harmonic and stable environ-
mental sounds are all indexed as having music com-
ponents, while nonharmonic sounds are all indexed as
not having music components. However, there are some
exceptional cases in between such as certain harmonic
and nonharmonic mixed sounds, for which we have to add
rules in the program to properly place them.

3) Pure Music:Zero ratios for all pure music segments are
below 0.3. Indexing errors normally come from short
notes, low volume or low frequency parts, nonharmonic
components, and the intermissions between notes.

4) Song:Most song segments have zero ratios below 0.5.
Those parts not detected as having music components re-
sult from:peak tracks thatshape like ripples insteadof lines
when thenote is long, the intermissionsbetweennotes, low
volume or low frequency sounds. When the ripple- shaped
peak tracksaredetectedand indexedasmusiccomponents,
zero ratios for songsare significantly reduced.

5) Speech with Music Background:When the speech signal
is strong, the background music is normally hidden and
can not be detected. However, music components can be
detected in the intermission periods of speech or when
music signal becomes stronger. We make the distinction
of the following two cases. In the first case, music is
stronger or there are many intermissions in speech so that
music is a prominent part of the sound, the zero ratios are
below 0.6. In the second case, music is weak while speech
is strong and continuous, so that speech is the major com-
ponent and music may be ignored. Zero ratios are higher
than 0.8 in such a case.

Thus, based on a threshold for the zero ratio at about 0.7
together with some other rules, audio segments can be sepa-
rated into two categories as desired. The first category contains
harmonic and stable environmental sound, pure music, song,
speech with the music background and environmental sound
with the music background. In the second category, there are
pure speech and nonharmonic environmental sound. Further
classification is done within each category.
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3) Detecting Harmonic Environmental Sounds:Within
the first category, environmental sounds which are harmonic
and stable are separated out first. The temporal curve of the
short-time fundamental frequency is checked. If most parts of
the curve are harmonic, and the fundamental frequency is fixed
at one particular value, the segment is indexed as “harmonic
and unchanged.” A typical example of this type is the sound
of touch-tone. If the fundamental frequency of a sound clip
changes over time but only with several values, it is indexed as
“harmonic and stable.” Examples of this type include the sounds
of doorbell and pager. This classification step is performed here
as a screening process for harmonic environmental sounds, so
that they will not interfere with the differentiation of music.

4) Distinguishing Pure Music:Pure music is distinguished
based on statistical analyzes of the ZCR and SFuF curves.
Four aspects are checked: the degree of being harmonic, the
degree of the fundamental frequency’s concentration on certain
values during a period of time, the variance of the average
zero-crossing rate, and the range of amplitude of the average
zero-crossing rate. For each aspect, there is one empirical
threshold set and a decision value defined. If the threshold is
reached, the decision value is set to 1; otherwise, it is set to
a fraction between 0 and 1 according to the distance to the
threshold. The four decision values are averaged with prede-
termined weights to derive a total probability of the segment’s
being pure music. For an audio segment to be indexed as “pure
music,” this probability should be above a certain threshold and
at least three of the decision values should be above 0.5.

5) Distinguishing Songs:Up to this step, what are left in
the first category include the sound segments of song, speech
with music background and environmental sound with music
background. We extract the spectral peak tracks of these seg-
ments, and differentiate the three audio types based on morpho-
logical analyzes of these tracks. The song segments are char-
acterized by one of the three features: ripple-shaped harmonic
peak tracks (due to the vibration of vocal chords), tracks which
are of longer durations compared to those in speech, and tracks
which have a fundamental frequency higher than 300 Hz. The
groups of tracks are checked whether any of these three fea-
tures are matched. The segment will be indexed as “song” if
either the sum of durations in which the harmonic peak tracks
satisfy one of the features gets to a certain amount, or its com-
parison to the total length of the segment reaches a certain ratio.
The ripple-shaped tracks are detected by taking the first-order
difference of the track and checking the pattern of the resulted
sequence. One thing to point out is that while some musical in-
struments such as violin may also generate ripple-shaped peak
tracks; they are, however, normally at higher frequency bands.

6) Separating Speech/Environmental Sound with Music
Background: According to [21], “when sounds with peaked
spectra are mixed, energy from one or other source generally
dominates each channel.” Therefore, even though there is music
in the background, as long as the speech is strong, harmonic peak
tracks of the speech signal can be detected in spite of the exis-
tence of music components. We check the groups of tracks to see
whether they concentrate in the lower-to-mid frequency bands
(with fundamental frequencies between 100 to 300 Hz) and have
lengths within a certain range. If there are durations in which the

spectral peak tracks satisfy these criteria, the segment is indexed
as “speech with music background.” Finally, what left in the first
category are the segments which have music components but do
not meet the criteria for any of the above audio types. They are
indexed as “environmental sound with music background.”

7) Distinguishing Pure Speech:Within the second category,
pure speech is first distinguished and five aspects of conditions
are checked. The first aspect is the relation between the temporal
curves of ZCR and energy function. In speech segments, the
ZCR curve has peaks for unvoiced components and troughs for
voiced components, while the energy curve has peaks for voiced
components and troughs for unvoiced components. Thus, there
is a compensative relation between them. We clip both ZCR
and energy curves at one third of the maximum amplitude and
remove the lower parts so that only peaks of the two curves
will remain. Then, the inner product of the two residual curves
is calculated. This product is normally near to zero for speech
segments because the peaks appear at different times in the two
curves, while it is much larger for other types of audio.

The second aspect is the shape of ZCR curve. For speech, the
ZCR curve has a stable and low baseline with peaks above it.
We define the baseline to be the linking line of lowest points
of troughs in the ZCR curve. The mean and variance of the
baseline are calculated. The parameters (amplitude, width, and
sharpness) and the appearance frequency of the peaks are also
considered. The third and fourth aspects are the variance and the
range of amplitude of the ZCR curve, respectively. Contrary to
music segments where the variance and the range of amplitude
are normally lower than certain thresholds, a typical speech seg-
ment has a variance and a range of amplitude that are higher than
certain thresholds. The fifth aspect is the fundamental frequency
property. As speech is harmonic and nonharmonic mixed, it has
a harmony percentage within a certain range. There is also re-
lation between the SFuF curve and the energy curve, i.e., the
harmonic parts in SFuF correspond to peaks in the energy curve
while the zero parts in SFuF correspond to troughs in the energy
curve. A decision value, which is a fraction between 0 and 1, is
defined for each of the five aspects. The weighted average of
these decision values represent the possibility of the segment’s
being speech. When the possibility is above a certain threshold
and at least three of the decision values are above 0.5, the seg-
ment is indexed as “pure speech.”

8) Classifying Nonharmonic Environmental Sounds:The
last step is to classify what is left in the second category into
one type of nonharmonic environmental sound as the following.

1) If either the energy function curve or the ZCR curve has
peaks which have approximately equal intervals between
neighboring peaks, the segment is indexed as“periodic or
quasiperiodic”. Examples of this type include the sounds
of clock tick and footstep.

2) If the percentage of harmonic parts in the SFuF curve is
within a certain range (lower than the threshold for music,
but higher than the threshold for nonharmonic sound),
the segment is indexed as“harmonic and nonharmonic
mixed”. For example, the sound of train horn, which is
harmonic, appears with a nonharmonic background. Also,
the sound of cough consists of both harmonic and nonhar-
monic components.



454 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 4, MAY 2001

3) If the ZCR values are within a relatively small range com-
pared to the absolute range of the frequency distribution,
the segment is indexed as“nonharmonic and stable”.
One example is the sound of birds’ cry, which is nonhar-
monic but its ZCR curve is concentrated in the range of
80–120 with an absolute range of 150.

4) Finally, if the segment does not satisfy any of the above
conditions, it is indexed as“nonharmonic and irregular”.
Most environmental sounds belong to this type, such as
the sounds of thunder, earthquake, and fire.

C. Postprocessing

The postprocessing step is to reduce possible segmentation
and classification errors. We have adjusted the segmentation
algorithm to be sensitive enough to detect all abrupt changes.
Thus, it is possible that one continuous scene is broken into sev-
eral segments. For example, one music piece may be broken into
several segments due to abrupt changes in the energy curve, and
some small segments may even be misclassified as “harmonic
and stable environmental sound” because of the unchanged tune
in the segment. Through post-processing, these segments are to
be combined to other segments and are reindexed based on their
contextual relations.

Here are some examples of heuristic rules used in the post-
processing step: if a “silence” segment is shorter than 2 s and
the two segments prior and next to it have the same index, the
three segments are merged into one and indexed as the same
as the first segment; if a “harmonic and fixed” or “harmonic
and stable” environmental sound segment is shorter than 5 s and
is next to a “pure music” or “song” segment, it is merged into
that segment; if a “harmonic and nonharmonic mixed environ-
mental sound” is shorter than 2 s and is between two segments of
“speech with music background” or “environmental sound with
music background,” the three segments are merged into one and
indexed according to the first segment.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Audio Database

We have built a generic audio database to be used as the
testbed of the proposed algorithms, which consists of the fol-
lowing contents: 1000 clips of environmental audio including
the sounds of applause, animal, footstep, raining, explosion,
knocking, vehicles and so on; 100 pieces of classical music
played with ten kinds of instruments, 100 other music pieces
of different styles (classic, jazz, blues, light music, Chinese and
Indian folk music, etc.); 50 clips of songs sung by male, fe-
male, or children, with or without musical instrument accom-
paniment; 200 speech pieces in different languages (English,
German, French, Spanish, Japanese, Chinese, etc.) and with dif-
ferent levels of noise; 50 clips of speech with the music back-
ground; 40 clips of environmental sound with the music back-
ground; and 20 samples of silence segment with different types
of low-volume noise (clicks, brown noise, pink noise and white
noise). These short pieces of sound clips (with duration from
several seconds to more than 1 min) are used to test the audio
classification performances. We also collected dozens of longer

TABLE I
CLASSIFICATION RESULTS FORAUDIO CATEGORIES

TABLE II
CLASSIFICATION RESULTS FORBASIC AUDIO TYPES

audio clips recorded from movies or video programs. These
pieces last from several minutes to half an hour, and contain
various types of audio. They are used to test the performances
for audiovisual data segmentation and indexing.

B. Generic Audio Data Classification Results

The proposed classification approach for generic audio data
achieved an accuracy rate of more than 90% by using a set of
1200 audio pieces including all types of sound selected from
the audio database described above. Listed in Tables I and II are
results at the two classification hierarchies, respectively, where
sensitivity rate is defined as the ratio between the number of
correctly classified samples and the actual number of samples
in one category, and recall rate is the ratio between the number
of correctly indexed samples and the total number of samples
as indexed in one audio type (including false alarms). “MBG”
is the abbreviation for “music background.” In order to obtain
threshold values which are used in the heuristic procedures,
10–50% of samples in each audio type were randomly selected
to form a training set (i.e., there were 20–60 samples from each
type). The threshold values were determined step by step ac-
cording to the segmentation and indexing process as outlined in
Section V. And in each step, an iterative procedure of modifying
and testing the threshold values was conducted until an optimal
result was achieved. Then, the whole data set was used to testify
the classification performances.

From Table I, we can see that sounds without music com-
ponents are correctly categorized since they all have a rather
high zero ratio. For sounds in the first category, there are
classification errors with some song segments (especially those
without instrument accompaniment) and some speech with
music background segments in which the music components
are weak. However, with hybrid-type sounds and sound effects
involved here, the overall accuracy for categorizing music/non-
music sounds is still comparable to previous results for pure
speech/music discrimination tasks.

Within the first category, several harmonic sound effects are
indexed as “pure music,” and there are music segments misclas-
sified as song, speech with MBG or sound effect with MBG. A
couple of song segments which lack the ripple-shaped spectral
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Fig. 13. Demonstration of generic audio data classification.

Fig. 14. Demonstration of audiovisual data segmentation.

peak tracks are taken as sound effect with MBG. For the second
category, apart from false alarms from the first category, there
are also 27 misclassifications between pure speech and nonhar-
monic environmental sound segments. It should be noted that
most mistakes result from the very noisy background in some
speech, music and song segments. While our approach is nor-
mally robust in distinguishing speech and music with a rather
high level of noise, the algorithm needs to be further improved
so that speech and music components are correctly detected
as long as their contents can be recognized by human percep-
tion. On the whole, the ratio of the total number of correctly
indexed samples in the eight audio types (i.e., audio types listed
in Table II plus silence) to the size of the data set reaches 94.8%.
We also calculated the accuracy rate of samples not included in

the training set, which is 90.7%. A demonstration program was
made for the online audio classification, which shows the wave-
form, the audio features and the classification result for a given
sound, as illustrated in Fig. 13.

C. Audiovisual Data Segmentation and Indexing Results

We tested the segmentation procedure with audio clips
recorded from movies and video programs. With Pentium333
PC/Windows NT, segmentation and classification tasks can be
achieved together with less than one eighth of the time required
to play the audio clip. We made a demonstration program for
online audiovisual data segmentation and indexing as shown in
Fig. 14, where different types of audio data are represented by
different colors. Displayed on this figure is the segmentation
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Fig. 15. Segmentation of a movie audio clip.

and indexing result for a 42-s long audio clip recorded from
a Spanish cartoon video called “Don Quijote de la Mancha.”
The first segment in this audio clip is song performed by
children and with musical instrument accompaniment, which
is indexed as “song.” Then, after a period of silence which
is indexed as “silence,” there is a segment of female speech,
and it is indexed as “pure speech.” Afterwards, there is a
short pause indexed as “silence” and followed by a segment of
music which is indexed as “pure music.” Next, with the music
as background, comes the speech of an old male, and the
segment is indexed as “speech with the music background.”
Finally, the music stops, and there is speech of a boy which is
indexed as “pure speech.”

For another example, an audio clip recorded from the movie
“Washington Square” was segmented as illustrated in Fig. 15.
In this 50-s long audio clip, there is first a segment of speech
spoken by a female (indexed as “pure speech”), then a seg-
ment of screams by a group of people (indexed as “nonharmonic
and irregular environmental sound”), followed by a period of
unrecognizable conversation of multiple people simultaneously
mixed with baby cry (indexed as the mix of harmonic and non-
harmonic sounds). Then, a low volume music appears in the
background (indexed as “environmental sound with music back-
ground”). Afterwards, there is a segment of music with very low
level environmental sounds as background (indexed as “pure
music”). And finally, there is a short conversation between a
male and a female (indexed as “pure speech”).

Besides the above two examples, we also performed exper-
iments on twenty or so other audio clips. In general, bound-
aries between segments of different audio types are set quite
precisely with a precision within 1 s as compared to human per-
ception. Using human judgement as the ground truth, our algo-
rithm is sensitive enough to detect more than 95% of audio type
changes. As to the indexing accuracy, the result is similar to that
of the audio classification experiment described in last section,
i.e., over 90% of the segments are correctly indexed.

VII. CONCLUSION AND FUTURE WORK

A scheme for the automatic segmentation and indexing of au-
diovisual data based on audio content analysis was presented in
this paper. Previous work on video segmentation and annotation
has been mostly focused on the visual information. The common
framework is todetect videoshotchangesusinghistogramdiffer-
ence and motion vectors, and extract keyframes to represent each
video shot. However, this visual-based processing often leads to
a far too fine segmentation of the audiovisual sequence with re-
spect to the semantic meaning of data. For example, in the video
sequence of a song performance, there may be shots appearing in
turn of the singer, of the band, of the audience, and of some other
designed views. According to the visual information, these shots
will be indexed separately. But according to the audio informa-
tion, we know that they are actually within one performance of
a song. Therefore, in our approach for video content parsing, the
first step is to conduct a segmentation of the video sequence into
semantic scenes based on audio cues, and index each scene with
the proposed audio classification algorithms.

While current approaches for audio content analysis are nor-
mally developed for specific scenarios, a generic scheme was
investigated in this work to cover all sorts of audio signals, in-
cluding hybrid-type sounds and environmental sounds which
are important in many applications, but seldom considered in
previous work. Four kinds of audio features including the energy
function, the average zero-crossing rate, the fundamental fre-
quency and the spectral peak track are analyzed to reveal differ-
ences among different types of audio data. Methods are also pro-
posed for estimating the fundamental frequency and extracting
spectral peak tracks from the AR model generated spectrum.
Based on audio feature analysis, a procedure for online segmen-
tation and classification of the accompanying audio signal in au-
diovisual data into twelve basic audio types was accomplished.
An accurate classification rate higher than 90% was achieved.
In the segmentation and indexing of audio data recorded from
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movies and video programs, segment boundaries were precisely
set, and each segment was properly annotated.

There are several related tasks to be conducted in the future.
We will first improve the audio classification procedure so as
to make it more robust to all kinds of situations. For example,
spectral peak tracks in the segments of chorus may be different
from those of solo songs, and may lack the ripple-shaped fea-
ture. We will also work on extracting audio features in the com-
pression domain (e.g., the MPEG bitstreams), since most dig-
ital audiovisual data available these days are in the compressed
format. Then, analysis results of the audio information will be
integrated into those of the visual information and the caption in
video programs so that a fully functional system for video con-
tent parsing can be achieved.

REFERENCES

[1] S. W. Smoliar and H. Zhang, “Content-based video indexing and re-
trieval,” IEEE Multimedia, pp. 62–72, Summer 1994.

[2] M. Flickner, H. Sawhney, and W. Niblacket al., “Query by image and
video content: The QBIC system,”Computer, vol. 28, no. 9, pp. 23–32,
1995.

[3] S.-F. Chang, W. Chen, and H. J. Menget al., “A fully automated content
based video search engine supporting spatio-temporal queries,”IEEE
Trans. Circuits Syst. Video Technol., vol. 8, pp. 602–615, Sept. 1998.

[4] J. Saunders, “Real-time discrimination of broadcast speech/music,” in
Proc. Int. Conf. Acoustics, Speech, Signal Processing’96, vol. 2, Atlanta,
GA, May 1996, pp. 993–996.

[5] E. Scheirer and M. Slaney, “Construction and evaluation of a robust
multifeature speech/music discriminator,” inProc. Int. Conf. Acoustics,
Speech, Signal Processing’97, Munich, Germany, Apr. 1997.

[6] L. Wyse and S. Smoliar, “Toward content-based audio indexing and re-
trieval and a new speaker discrimination technique,” Inst. Syst. Sci., Nat.
Univ. Singapore, http://www.iss.nus.sg/People/lwyse/lwyse.html, Dec.
1995.

[7] D. Kimber and L. Wilcox, “Acoustic segmentation for audio browsers,”
in Proc. Interface Conf., Sydney, Australia, July 1996.

[8] S. Pfeiffer, S. Fischer, and W. Effelsberg, “Automatic audio content
analysis,” Praktische Informatik IV, Univ. Mannheim, Mannheim, Ger-
many, http://www.informatik.uni-mannheim.de/pfeiffer/publications/,
Apr. 1996.

[9] A. Ghias, J. Logan, and D. Chamberlin, “Query by humming-musical
information retrieval in an audio database,” inProc. ACM Multimedia
Conf., 1995, pp. 231–235.

[10] J. Foote, “Content-based retrieval of music and audio,”Proc. SPIE,
1997.

[11] E. Wold, T. Blum, and D. Keislaret al., “Content-based classification,
search, and retrieval of audio,”IEEE Multimedia, pp. 27–36, Fall 1996.

[12] G. Smith, H. Murase, and K. Kashino, “Quick audio retrieval using ac-
tive search,” inProc. Int. Conf. Acoustics, Speech, Signal Processing’98,
Seattle, WA, May 1998, pp. 3777–3780.

[13] Z. Liu, J. Huang, and Y. Wanget al., “Audio feature extraction and anal-
ysis for scene classification,” inProc. IEEE 1st Multimedia Workshop,
1997.

[14] Z. Liu, J. Huang, and Y. Wang, “Classification of TV programs based
on audio information using hidden Markov model,” inProc. IEEE 2nd
Workshop Multimedia Signal Processing, Redondo Beach, CA, Dec.
1998, pp. 27–32.

[15] Z. Liu and Q. Huang, “Classification of audio events in broadcast news,”
in Proc. IEEE 2nd Workshop Multimedia Signal Processing, Dec. 1998,
pp. 364–369.

[16] N. Patel and I. Sethi, “Audio characterization for video indexing,” in
Proc. SPIE Conf. Storage Retrieval Still Image Video Databases, vol.
2670, San Jose, CA, 1996, pp. 373–384.

[17] K. Minami, A. Akutsu, and H. Hamadaet al., “Video handling with
music and speech detection,”IEEE Multimedia, pp. 17–25, Fall 1998.

[18] J. Huang, Z. Liu, and Y. Wang, “Integration of audio and visual informa-
tion for content-based video segmentation,” inProc. IEEE Conf. Image
Processing, Oct. 1998.

[19] M. R. Naphade, T. Kristjansson, and B. Freyet al., “Probabilistic mul-
timedia objects (MULTI-JECTS): A novel approach to video indexing
and retrieval in multimedia systems,” inProc. IEEE Conf. Image Pro-
cessing, Chicago, IL, Oct. 1998.

[20] J. S. Boreczky and L. D. Wilcox, “A hidden Markov model framework
for video segmentation using audio and image features,” inProc.
Int. Conf. Acoustics, Speech, Signal Processing’98, May 1998, pp.
3741–3744.

[21] A. S. Bregman,Auditory Scene Analysis: The Perceptual Organization
of Sound. Cambridge, MA: MIT Press, 1990.

[22] G. J. Brown and M. Cooke, “Computational auditory scene analysis,”
Comput. Speech Lang., vol. 8, no. 2, pp. 297–336, 1994.

[23] M. Weintraub, “A theory and computational model of auditory monaural
sound separation,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ.
, Stanford, CA, 1985.

[24] D. P. W. Ellis, “Prediction-driven computational auditory scene anal-
ysis,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Mass. Inst.
Technol., Cambridge, MA, 1996.

[25] B. L. Vercoe, W. G. Gardner, and E. D. Scheirer, “Structured audio: Cre-
ation, transmission, and rendering of parametric sound representations,”
Proc. IEEE, vol. 86, pp. 922–939, May 1998.

[26] L. Rabiner and R. Schafer,Digital Processing of Speech Sig-
nals. Englewood Cliffs, NJ: Prentice-Hall, 1978.

[27] A. Choi, “Real-time fundamental frequency estimation by least-square
fitting,” IEEE Trans. Speech Audio Processing, vol. 5, pp. 201–205, Mar.
1997.

[28] B. Doval and X. Rodet, “Estimation of fundamental frequency of
music sound signals,” inProc. Int. Conf. Acoustics, Speech, Signal
Processing’91, vol. 5, Toronto, ON, Canada, Apr. 1991, pp. 3657–3660.

[29] W. B. Kuhn, “A real-time pitch recognition algorithm for music appli-
cations,”Comput. Music J., vol. 14, no. 3, pp. 60–71, Fall 1990.

[30] F. Everest,The Master Handbook of Acoustics. New York: McGraw-
Hill, 1994.

Tong Zhang(M’98) received the B.S. degree in elec-
trical engineering and the M.S. and Ph.D. degrees
of biomedical engineering from Tsinghua University,
Beijing, China, in 1992, 1994, and 1996, respectively,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Southern California,
Los Angeles, in 1998 and 1999, respectively.

Since February 2000, she has been a Technical
Contributor at the Hewlett-Packard Laboratories,
Palo Alto, CA. Her research interests are in the areas
of digital signal and image processing, audio and

video content analysis, and multimedia database management.
Dr. Zhang is a member of SPIE and ACM.

C.-C. Jay Kuo (S’83–M’86–SM’92–F’99) received
the B.S. degree from the National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., in 1980 and the M.S.
and Ph.D. degrees from the Massachusetts Institute
of Technology, Cambridge, in 1985 and 1987, respec-
tively, all in electrical engineering.

He was Computational and Applied Mathematics
(CAM) Research Assistant Professor with the De-
partment of Mathematics, University of California,
Los Angeles, from October 1987 to December
1988. Since January 1989, he has been with the

Department of Electrical Engineering—Systems and the Signal and Image
Processing Institute, University of Southern California, Los Angeles, where he
currently has a joint appointment as Professor of electrical engineering and
mathematics. His research interests are in the areas of digital signal and image
processing, audio and video coding, media communication technologies and
delivery protocols, and network computing. He has authored more than 400
technical publications in international conferences and journals and graduated
around 30 Ph.D. students. He is the Editor-in-Chief for theJournal of Visual
Communications and Image Representationand Editor for theJournal of
Information Science and Engineering.

Dr. Kuo is a member of SIAM, ACM, and SPIE. He is an Associate Ed-
itor for the IEEE TRANSACTIONS ONSPEECH ANDAUDIO PROCESSINGand was
Associate Editor for IEEE TRANSACTIONS ONIMAGE PROCESSINGfrom 1995
to 1998 and the IEEE TRANSACTIONS ONCIRCUITS AND SYSTEMS FORVIDEO

TECHNOLOGYfrom 1995 to 1997. He received the National Science Foundation
Young Investigator Award (NYI) and Presidential Faculty Fellow (PFF) Award
in 1992 and 1993, respectively.


