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Audio Content Analysis for Online Audiovisual Data
Segmentation and Classification

Tong ZhangMember, IEEEand C.-C. Jay KupFellow, IEEE

Abstract—While current approaches for audiovisual data represent the theme in a simpler fashion than the pictorial part.
segmentation and classification are mostly focused on visual cues,For instance, all video scenes of gun fight should include the
audio signals may actually play a more important role in content sound of shooting or explosion, while the image content may

parsing for many applications. An approach to automatic segmen- . . L
tation and classification of audiovisual data based on audio content Y&y @ lot from one video clip to another. In the beginning of

analysis is proposed. The audio signal from movies or TV programs  the movie “Washington Square,” there is a segment which is of
is segmented and classified into basic types such as speech, musiseveral minutes long, showing buildings, streets, and people ofa
song, environmental sound, speech with music background, envi- neighborhood. There are many different shots involved, but the
ronmental sound with music background, silence, etc. Simple audio continuous accompanying music indicates that they are actually

features including the energy function, the average zero-crossing ithi di M th hinf fi
rate, the fundamental frequency, and the spectral peak tracks wWithin one aldio SCene. iioreover, the SpEECh Informaton con=

are extracted to ensure the feasibility of real-time processing. A tained in audio signals is usually critical in identifying the theme
heuristic rule-based procedure is proposed to segment and classify of the video segment. By only listening to the dialog in a seg-
audio signals and built upon morphological and statistical analysis ment, it is usually enough for us to understand what it is about.
of the time-varying functions of these audio features. Experimental owever, a viewer can be easily lost by watching pictures only.
results show that the proposed scheme achieves an accuracy rate o o - S
more than 90% in audio classification. hus, it is fair to say that the audio signal may actually play a
i . o . i primary role in content parsing of audiovisual data.
Index Terms—Audio analysis, audio indexing, audio segmen-  \ye haye heen working on the integration of audio and vi-
tation, audiovisual content parsing, information filtering and - . . . . - .
retrieval, multimedia database management. sual information for online video indexing and annotation. The
first step is to conduct a segmentation of the video sequence
into semantic scenes based on audio content analysis. We call
. INTRODUCTION such a segmented unit as “audio scene,” and index it as pure
HE task of automatic segmentation, indexing, and retriev@iP€€ch, pure music, song, speech with music background, en-
of audiovisual data has important app"cations in profeyjronmental sound with music baCkgrOUnd, Silence, etc. based
sional media production, audiovisual archive management, & our audio classification algorithms. Then, further segmen-
ucation, entertainment, surveillance, and so on. For exampldation of audio scenes into visual shots will be done according
vast amount of audiovisual material has been archived in telet@-visual cues, and keyframes will be extracted from each shot
sion and film databases. If these data can be properly segmeri€eglive the visual index. The combination of audio and visual
and indexed, it will facilitate the retrieval of desired video segndexing should provide a great help to users in retrieving and
ments for the editing of a documentary or an advertiseme?fowsing audiovisual segments of their interest from a movie
video clip. To give another example, in audiovisual librarie@ & TV program. For example, to retrieve “segments of songs
or family entertainment applications, it will be convenient t@erformed by Michael Jackson” may be achieved by searching
users if they are able to retrieve and watch video segmentsf@faudio index of “song” and keyframes of “Michael Jackson.”
their interest. As the volume of the available material becomesln this paper, we focus on the problem of segmenting and clas-
huge, manual segmentation and indexing is impossible. Aufdfying accompanying audio signals in audiovisual data based
matic segmentation and indexing through computer processRiaudio contentanalysis. The paper is organized as follows. Ex-
based on multimedia content analysis is clearly the trend.  isting work on audio content analysis is reviewed in Section II.
Current approaches for audiovisual data segmentation aheoverview of the proposed system and major contributions of
indexing are mostly focused on visual cues such as color hiBis research is presented in Section Ill. The computation and
togram differences, motion vectors, and keyframes [1]_[3] m’operties of audio features used in this work are analyZEd in
contrast, the accompanying audio signal receives relatively litf&ction IV. The proposed procedures for the segmentation and
attention. There is however a significant amount of informatidfdexing of audio stream are described in Section V. Experi-

contained in the continuous flow of audio data which may oftefental results are shown in Section VI. Finally, concluding re-
marks and future research plans are given in Section VII.
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1) Audio Segmentation and Classificatio@ne basic game, football game and advertisement. The adopted features
problem in audio segmentation and classification is the digicluded the silence ratio, the speech ratio and the subband
crimination between speech and music, since they are #wergy ratio which were extracted from the volume distribution,
two most important types of audio. The approach presentda: pitch contour and the frequency domain, respectively. The
by Saunders [4] used only the average zero-crossing rateltilayer neural network (MNN) and the hidden Markov
and the energy features, and applied a simple thresholdmgdel (HMM) were used as classifiers. It was shown that,
procedure while Scheirer and Slaney [5] proposed to usden using MNN, the method worked well in distinguishing
thirteen features in the time, frequency, and cepstrum domaiasong reports, games and advertisements, but had difficulty
as well as model based classification methods (MAP, GMNh classifying the two different types of reports and the two
kNN, etc.) to achieve a robust performance. Both approactaifferent kinds of games. While using HMM, the overall accu-
reported real-time discrimination of an accuracy rate oveacy rate increased, but there were misclassifications among all
90%. As in general, speech and music have quite differehe five sorts of scenes. Liu and Huang [15] also applied the
spectral distribution and temporal changing patterns, it is neame set of audio features in distinguishing news reports from
very difficult to reach a relatively high level of discriminationcommercials and music in broadcast news programs. A simple
accuracy. Further classification of audio data may take otheaird threshold classifier and a fuzzy classifier were used. Patel
sounds, besides speech and music, into consideration. Wged Sethi [16] proposed to perform audio characterization on
and Smoliar [6] worked on the classification of audio signal§IPEG compressed data (actually, the subband level data) for
into “music,” “speech,” and “others.” In their work, music waghe purpose of video indexing. The audio sighal was classified
first detected based on the average length of time in whiafto dialog, nondialog and silence intervals. Features were
peaks exist in a narrow frequency region. Then, speech waken from the energy, the pitch, the spectrogram and the
separated out by pitch tracking. This method was developed fiuse rate domains, and organized in a thresholding procedure.
the parsing of news stories. An acoustic segmentation approddiere were somehow quite a few mistakes occurring in the
was also proposed by Kimber and Wilcox [7], where audidassification between dialog and nondialog intervals. An
recordings were segmented into speech, silence, laughter apgroach to video indexing through music and speech detection
nonspeech sounds. They used cepstral coefficients as featwas proposed by Minargt al. [17], where image processing
and the hidden Markov model (HMM) as the classifier. Theechniques were exploited to analyze the spectrogram of
method was mainly applied to the segmentation of discussiandio signals. Spectral peaks of music were recognized by
recordings in meetings. Research by Pfeifféral. [8] aimed applying an edge-detection operator, and speech harmonics
at the analysis of the amplitude, frequency and pitch of audicere detected with a comb filter. They also presented two
signals, as well as the simulation of human audio perceptionaplication systems to demonstrate the indexing method. One
that results may be used to segment audio data streams ansygtem allowed users to access any frame of video randomly
recognize music. These features were also used to detect sourttite the other created condensations of dramas or movies by
of shot, cry and explosion which might indicate violence.  excerpting meaningful video segments based on the locations

2) Content-Based Audio RetrievaDne specific technique of music and speech.
in content-based audio retrieval is query-by-humming, through4) Integration of Audio and Visual Information for Video Seg-
which a song is retrieved by humming the tune of it. A typmentation and IndexingA new trend for video segmentation
ical system was presented by Ghesal. [9] for this purpose. and indexing is to combine audio and visual information in one
Foote [10] proposed a music and sound effect retrieval systefnmamework. This idea was reflected in three recent papers. How-
where the Mel-frequency cepstral coefficients (MFCC) werever, all audio features adopted were quite primitive ones, and
taken as features, and a tree-structured classifier was built fior delicate procedure of audio feature extraction for the spe-
retrieval. Since MFCC can not represent the timbre of sounddéic purpose was considered up to now. In the method proposed
properly, this method in general fails to distinguish music arfay Huanget al. [18], the same set of audio features as used
environmental sounds with different timbre characters. In the [13] were combined with the color and motion information
content-based retrieval (CBR) work of Wodd al. [11], statis- to detect scene and shot breaks. In the approach presented by
tical values (including means, variances, and autocorrelatioddgphadeet al. [19], subband audio data and color histograms
of several time- and frequency-domain measurements were usédne video segment were integrated to form a “Multiject,”
to represent perceptual features like loudness, brightness, baardi two variations of the hidden Markov model were used to
width, and pitch. Since merely statistical values were consiohdex Multijects. Experimental results of detecting the events
ered, this method was only suitable for sounds with a singhé “explosion” and “waterfall” were reported. In the approach
timbre. An audio retrieval method was proposed by Smithl. of Boreczky and Wilcox [20], color histogram differences, cep-
[12] for searching quickly through broadcast audio to detect asttal coefficients of audio data, and motion vectors were used to-
locate sound segments containing a certain reference temptgther with a hidden Markov model approach to segment video
based on an active search algorithm and histogram modelingrib regions defined by shots, shot boundaries and camera move-
zero-crossing features. The exact audio segment to be searahedt within shots.
should be knowra priori in this algorithm. Another research field which is quite important for audio

3) Audio Analysis for Video Indexingin [13] and [14], Liu content analysis is th&udio Scene Analysis (ASAyhich was
et al. applied audio analysis results to the distinction of fiveamed after the classic work of Bregman [21]. The goal of
different video scenes: news report, weather report, baskethhls field is to understand the way the auditory system and the
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brain of human beings process complex sound environmerass distinguished, and nonsilent sounds are separated into
where multiple sources that change independently over time &am® categories, i.e., with or without music components by
present. Brown and Cooke [22] termed the research area of cdatecting continuous frequency peaks from the power spectrum
structing computer models to perform auditory source segregd-audio signal. Sound segments in the first category are further
tion as computational audio scene analysis (CASA). One edtassified to be harmonic environmental sound, pure music,
ample is the work by Weintraub [23] who used a dynamic pr@ong, speech with music background, or environmental sound
gramming framework around Licklider's autocorrelation modetith music background based on the analysis of audio features.
to separate voices of two speakers whose voices interfere iB@nd segments in the second category are indexed as pure
single recording. Another example is the system built by Ellspeech or one type of the nonharmonic environmental sound.
[24], which aimed to analyze the sound and segregate percepttiablly, a postprocessing step is applied for reducing possible
components from noisy sound mixtures such as a “city-stressfgmentation errors.
ambience.” The structured audio in MPEG-4 unifies many ideasCompared with previous work, there are several distin-
and efforts in this field and provides semantic and symbolic dguishing features in the proposed scheme. First, besides
scriptions of audio (the decoder is standardized while matuwemmonly studied audio types such as speech and music in
techniques for the encoder are still to be developed in the comiggsting work, we have taken into account hybrid types of
years). A summarization of this work was given by Veraie sound which contain more than one kind of audio component.
al. in [25]. This technique is useful for ultra low-bit-rate transFor example, the speech signal with music background and the
mission, flexible synthesis, and perceptually based manipufanging of a person are two types of hybrid sound which have
tion and retrieval of sounds. characters of both speech and music. We are able to put these
two kinds of sound in different categories with the proposed
scheme, and their distinction is important in characterizing
audiovisual segments. For example, in documentaries or
In this research, we propose a scheme for the automatic segmmercials, there is often a musical background with speech
mentation and annotation of audiovisual data based on audfacommentary appearing from time to time. It is also common
content analysis. Four kinds of audio features are extractéuit clients want to retrieve a segment of video, in which there
namely, the short-time energy function, the short-time averagesinging of one particular song. There are other kinds of
zero-crossing rate, the short-time fundamental frequency amgbrid sound included in our system, e.g., speech or music
the spectral peak tracks. We perform the morphological amdth environmental sounds as the background (where the envi-
statistical analysis of temporal curves of these features to renmental sounds may be treated as noise), and environmental
veal differences among different types of audio. A rule-bassdunds with music as the background.
heuristic procedure is then built to segment and classify audioSecond, we put more emphasis on the distinction of environ-
signals with these features. The flowchart of this procedurengental sounds which are often ignored in previous work. Envi-
illustrated in Fig. 1. ronmental sounds, including sound effects, are an important in-
Segment boundaries are first detected by locating abrigvedient in audiovisual recordings, and their analysis is essential
changes in these short-time features. Then, each segmernh imany applications such as the post-processing of films. In our
classified to be one of the basic audio types. Silent segmesatheme, we separate environmental sounds into six categories

I1l. OVERVIEW OF THE PROPOSEDSYSTEM
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Fig. 2. Audio waveform and the short-time energy function of a speech segment.
according to their harmony, periodicity, or stability properties. IV. AUDIO FEATURE ANALYSIS

There are “harmonic and fixed,” “harmonic and stable,” “pe-

riodic or quasiperiodic,” “harmonic and nonharmonic mixed,"a" Short-Time Energy Function

“nonharmonic and stable,” and “nonharmonic and irregular” en- The short-time energy function of an audio signal is defined

vironmental sounds. as

Third, integrated features are exploited for audio classifica- 1
tion. For example, short-time features of the energy, the average E, == Z [z(m)w(n — m)]2 (1)
zero-crossing rate and the fundamental frequency are effectively N <

combined in distinguishing speech, music and silence. We use

not only the feature values, but also their change patterns ovétere _ . o

the time and the relationships among the three kinds of featurest(m)  discrete time audio signal;

We also propose a method to extract spectral peak tracks, and time index of the short-time energy;
use this feature specifically for the distinction of sound seg- w(m) rectangle window of lengtiV.

ments of songs and speech with music background. Furthgrprovides a convenient representation of the amplitude varia-
more, signal processing techniques are applied for the represgh over time. By assuming that the audio signal changes rela-
tation and classification of the extracted features, including mqfge|y siowly within a small interval, we calcula#, once every
phological and statistical analysis, the heuristic method, adagy samples at an input sampling rate of 11 025 samples/s. We
tive search, and fuzzy logic. set the window duration af(m) to be 150 samples so that there

Fourth, although the proposed scheme covers a wide ranggsafn overlap between neighboring frames. The audio waveform
audio types, the complexity is low since selected audio featuigsa speech segment and the temporal curve of its short-time en-
are easy to compute and the rule-based indexing procedgfgy function are shown in Fig. 2. Note that the sample index of
is fast. Most audio features used in this system are short-tifi@ energy curve is at the ratio of 1 : 100 compared to the corre-
and one-dimensional, which makes online audiovisual daigonding time index of the audio signal.
processing feasible. Among the three short-time features, theyagjor reasons for using the short-time energy feature in our
fundamental frequency is the most expensive in computatiQ@grk include
which only requires one 512-point FFT per 100 input samples.
The spectral peak tracking requires a little bit more calculation,
but it only has to be computed under certain conditions.

Finally, the proposed audio segmentation and classification
approach is based on the observation of different types of audio
signals and their physical features, which is generic and model-
free. Consequently, it can be easily applied, as the first step pro-. ) it can be used as the measurement to distinguish audible
cessing of digital audiovisual data, to almost any content-base sounds from silence when the SNR is high:
audiovisual material management system. For example, it may3) its change pattern over time may reveal th’e thythm and
be used as the tool for online segmentation and indexing of radio periodicity properties of sound.
and TV programs. An index table can be generated automati-
cally for each program, and the user is able to choose cert
segments (e.g., those of pure music) to browse. Especially,
inclusion of a keyframe for each segment in TV programs will For discrete-time signals, a zero-crossing is said to occur if
facilitate the retrieval task. successive samples have different signs. The rate at which zero-

1) for speech signals, it provides a basis for distinguishing
voiced speech components from unvoiced speech com-
ponents because values Bf, for the unvoiced compo-
nents are in general significantly smaller than those of the
voiced components, as can be seen from the peaks and
troughs in the energy curve;

in
%.IeShort-Time Avage Zep-Crossing Rate
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Fig. 3. Short-time average zero-crossing rates of four audio signals: (a) speech, (b) piano, (c) chime, and (d) footstep.

crossings occur is a simple measure of the frequency contenpefiks above it. Comparatively, the ZCR curve of music plotted
a signal. The short-time average zero-crossing rate is definedrakig. 3(b) has a much lower variance and average amplitude,
1 _ _ _ suggesting that the zero-crossing rate of music is normally much

In =3 Z [sgnle(m)] = sgnle(m = D]lw(n —m) () more stable during a certain period of time. ZCR curves of music
generally have irregular waveforms with a changing baseline and

where arelatively small range of amplitude. Since environmental audio
sgnfz(n)] = { 1 @(n) 20, consists of sounds of various origins, their ZCR curves can have
-1, z(n) <0 very different properties. For example, the zero-crossing rate of

andw(n) is a rectangle window. Temporal curves of the shori® sound of chime as shown in Fig. 3(c) reveals a continuous
time average Zero_crossing rate (ZCR) for several audio Sa%op OfthefrequencycentrC)ld OvertlmeWhllethatOfthefOOtStep
ples are shown in Fig. 3. Similar to the computation of theound in Fig. 3(d) is rather irregular. We may briefly classify
short-time energy function, we also choose to compute the z@©pvironmental sounds according to their ZCR curve properties
value at every 100 input samples, and set the window width $ych as regularity, periodicity, stability and range of amplitude.
150 samples.

The average zero-crossing rate can be used as another medsu
to distinguish between voiced and unvoiced speech signalsA harmonic sound consists of a series of major frequency
because unvoiced speech components normally have maomponents including the fundamental frequency and those
higher ZCR values than voiced ones [26]. As shown in Fig. 3(ayhich are integer multiples of the fundamental one. With this
the speech ZCR curve has peaks and troughs from unvoiced aadcept, we may divide sounds into two categories, i.e., har-
voiced components, respectively. This results in a large variamoenic and nonharmonic sounds. The spectra of sounds generated
and a wide range of amplitude for the ZCR curve. Note also thay trumpet and applause are illustrated in Fig. 4. It is clear that
the ZCR curve has a relatively low and stable baseline with higiiie former one is harmonic while the latter one is nonharmonic.

rahort-Time Fundamental Frequency
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Fig. 4. Spectra of harmonic and nonharmonic sound computed directly with FFT: (a) trumpet and (b) applause.
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Fig. 5. Spectra of harmonic and nonharmonic sound generated with the AR model: (a) trumpet and (b) applause.

Whether an audio segment is harmonic or not depends onrasge of audio signals. As our primary purpose of estimating
source. Sounds from most musical instruments are harmorifee fundamental frequency is to determine the harmonic prop-
The speech signal is a harmonic and nonharmonic mixedy for all kinds of audio signals, we tend to develop a method
sound, since voiced components are harmonic while unvoicetlich is efficient and robust, but not necessarily perfectly pre-
components are honharmonic. Most environmental sounds eige. In this work, the short-time fundamental frequency is cal-
nonharmonic, such as the sounds of applause, footstep, anthted based on peak detection from the spectrum of sound.
explosion. However, there are also examples of sound effdtte spectrum is generated with autoregressive (AR) model co-
which are harmonic and stable, such as the sounds of doorledficients estimated from the autocorrelation of audio signals.
and touch-tone; and those which are harmonic and nonharmohiés AR model generated spectrum is a smoothed version of
mixed like laughter and dog bark. the frequency representation. Moreover, as the AR model is an
In order to measure the harmony feature of sound, we dal-pole expression, peaks are prominent in the spectrum. Com-
fine the short-time fundamental frequency (SFuF) as such: whearing the spectra shown in Fig. 5, which were generated with
the sound is harmonic, the SFuF value is equal to the fundae AR model with those computed directly from the FFT of
mental frequency estimated at that instant; and when the soaudio signals as shown in Fig. 4, we can see that detecting
is nonharmonic, the SFuF value is set to zero. Although thgoeaks associated with the harmonic frequencies is much easier
are many schemes proposed for fundamental frequency estinathe AR generated spectrum than in the directly computed
tion or pitch detection in speech and music analysis [26]-[28he. We choose the order of the AR model to be 40. With this
(it is worthwhile to point out that the fundamental frequencgrder, harmonic peaks are remarkable while there are also non-
is a physical measurement while the pitch is rather a percdmrmonic peaks appearing. However, compared with harmonic
tual term [30]), none of them is perfectly satisfactory for a widpeaks, nonharmonic ones not only lack a precise harmonic re-
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Fig. 6. Short-time fundamental frequency of audio signals: (a) trumpet, (b) speech, (c) rain, and (d) laugh.

lation among them, but also appear to be less sharp at the maxHustrated in Fig. 6 are examples of SFuF curves of sounds.
imum and of smaller amplitude (i.e., the maximum to minimurBhown on the top of each picture is the “zero ratio” of the SFuF
distance of the peak) which is clearly observed in Fig. 5. Thusyrve for that sound segment, which is defined as the ratio be-
for a sound to be regarded as harmonic, there should be tiveen the number of samples with a zero SFuF value (i.e., non-
greatest-common-divider relation among peaks, and some of le@monic sound) and the total number of samples in the curve.
peaks should be sharp and high enough. One can see that music is in general continuously harmonic.

All maxima in the spectrum are detected as potential hakiso, the fundamental frequency usually changes more slowly
monic peaks, and the amplitude, the width and the sharpnéssn that of other kinds of sounds, and the SFuF value tends
of each peak are calculated using morphological analysis.tdtconcentrate on certain frequency for a short period of time.
is checked among locations of these peaks whether a certdarmonic and nonharmonic components appear alternately in
amount of them have a common divider and at least sometb& SFuF curve of the speech signal, since voiced components
them have sharpness, amplitude and width values satisfying aae harmonic and unvoiced components are nonharmonic. The
tain criteria. If all conditions are met, the SFuF value is estiundamental frequency of voiced components is normally in the
mated as the frequency corresponding to the greatest commamge of 100-300 Hz. Most environmental sounds are nonhar-
divider of locations of harmonic peaks; otherwise, SFuF is setriwonic with zero ratios over 0.9 such as the sound of rain. An
zero. SFUF is computed once every 100 input samples. After thetance of harmonic and nonharmonic mixed sound effects is
temporal curve of SFuF is obtained for a segment of a certahre sound of laughing, in which voiced segments are harmonic,
length, there is a postprocessing step in which singular pointsahile intermissions in between as well as transitional parts are
the temporal curve of SFUF are removed to improve the acawenharmonic. It has a zero ratio of 0.25 which is similar to that
racy of the SFuF estimation. of the speech segment.
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Fig. 7. Detecting harmonic peaks from power spectrum generated with the AR model parameters for song and speech segments: (a) femdPe=sctiyy with
and (b) female speech with = 80. P is order of the AR model.

D. Spectral Peak Track We currently fix the order of AR model at three levels: 40,

Peak tracks in the spectrogram of an audio signal often revggland 100. The idea is that it should be able to detect harmonic

characteristics of the type of sound. For example, sounds frc?r%aks with one of Fhese orders for squnds of concern. The
-Ehocedure to determine the proper order is stated below. If, in the

revious frame of an audio signal, harmonic peaks were detected
of time. Sounds from human voices have harmonic peak tra am the power spectrum generated with the AR mode| of order

which align tidily in the shape of a comb. Spectral peak tracks it (1 may be 40, 80, or 100), we begin to detect harmonlc_peaks
song segments may exist in a broad range of frequency ba 8§,the current frame W'th the spectrum of ordg If harmonic
and the fundamental frequency ranges from 87 Hz to 784 Hpgaks are found in this spectrum, we go on to the next frame.
There are relatively long tracks in songs which are stable b(g;herwse, we try the spectra generated W'Fh the othe_r two order
cause the voice may stay at a certain note for a period of tirﬁpe\,’els' If no harmonic peaks were detected in the previous fram_e,
and they are often in a ripple-like shape due to the vibration ertryth.e three order levels one by onefqrthe currentframe until
vocal chords. Spectral peak tracks in speech segments norm@fjnonic peaks are found or the conclusion of no harmonic peaks
lie in lower frequency bands, and are more close to each otff&fSting is obtained. Harmonic peaks should have harmonic re-
due to the fundamental frequency range of 100-300 Hz. Th@}#ons among them and satisfy some sharpness, amplitude and
also tend to be of shorter length because there are intermissifffh conditions. Since there are many spurious peaks in the
between voiced syllables, and may fluctuate slowly because fRECrum generated wifh = 80 or 100, we add the restrictionin
pitch may change during the pronunciation of certain syllable%.JCh cases that harmonic peaks should align consecutively in the
In this work, we extract spectral peak tracks for the purpose@iver-to-mid frequency bands and the fundamental frequency
characterizing sounds of song and speech. Basically, it is doiieu!d be below 250 Hz based on the features of speech signals.
by detecting peaks in the power spectrum generated by the AR, We apply a confidence level to the detection result when
model parameters and checking harmonic relations among fhe= 40, whichis setto 1 if the detected harmonic peaks satisfy
peaks. The range of fundamental frequency of harmonic pe&ggtam criteria; and set to 0 otherwise. If the cqnﬂdence level is
under consideration is set to 80 Hz—800 Hz due to the propefty/Ve Proceed to the next signal frame; Otherwise, we attempt to
of song and speech. With a 512-point FFT, the frequency resoflztéct harmonic peaks with a higher resolution (fe= 80and
tion should be enough to detect harmonic peaks for such a ra§8)- Ifno harmonic peaks are detected in these spectra, we come
if the order of the AR model is chosen properly. For exampl82ck to take the result @t = 40. Otherwise, we adoptharmonic
whenP = 40, harmonic peaks with a fundamental frequencheaks detectedinaspectrumwith a higher order. Harmonic peaks
higher than 250 Hz can be easily detected, which fits for mddgtected through the above procedure for two frames of song and
song segments. However, this resolution is not enough for m8Beech signals are shown in Fig. 7, where each detected peak is
male and female speech segments. By experiments, we folit@fked with a vertical line.
that P = 80 was normally suitable for female speech signals Harmonic peaks are detected once every 100 input samples,
(with a pitch at about 150-250 Hz), and male speech signaRd each signal frame contains 512 samples. The locations of
might require an order aP = 100 when the pitch is between detected peaks are aligned in the temporal order to form the
100-150 Hz. Nevertheless, with these higher valueB,airti- spectral peak tracks. In order to correct detection errors, two
fact peaks will appear in the estimated spectra of sounds havjrapt-processing steps are applied to the obtained tracks. The
higher fundamental frequencies, and may severely impair tfitst step is called “linking,” in which missing points in the
quality of peak detection in these sounds. tracks are added to make these tracks complete. This is done

remain at the same frequency level and last for a certain per



ZHANG AND KUO: AUDIO CONTENT ANALYSIS FOR ONLINE AUDIOVISUAL DATA SEGMENTATION AND CLASSIFICATION 449

6000 T Y T T 4

S : e geesT ar % - - .
oG =& ~r N o -a LY 24 T
5000 % v - w- j"g"" _ P PR P XS i~ -1
g - - . f - -an :\.I\n -
A > % ke ~ - ., -
4000 N %t’; M A Ay ‘\'"-v'\h‘\’"“ 4
= N T SV YA NS e NN
= fur, Pt AP o " A > -
= NI e TN LA VTN AN i IR
= e e W - ~ - ~ -
2 5000 VW“ - M-’C\-(\N\www 7 M‘ﬁ—“- M""\'r"«ﬁ -
S L NS A S ™ o TR AN e~ P, -
§ ¥ s T - ,vi\.‘ﬂvmfv"\-‘w -7 -

o RN e, R
2000 Wi e e > 2T A AN = DmrT g '\/\-'N/:"‘

" - w.w‘slm -, . P — .~W-- - v o
O afhua e S ST WO T e ey - ¥
1000 Wm Dt e S el N
g BT et D e s e
Bt mnmﬁ e —
J—
o L . s s 2
o 1 2 3 4 - (=3
Time

Fig. 8. Spectrogram and spectral peak tracks of female vocal solo.

by searching for holes (one to three samples wide) in the tracks. V. SEGMENTATION AND INDEXING OF AUDIO STREAM
Thes_e missing pplnts may r_esult from weak or overlapped h%r_- Detection of Segment Boundaries
monic peaks which are difficult to detect. The second step ISF i i ¢ audiovisual d h )

called “cleaning,” which is to remove isolated points that are or online segmentation of audiovisual data, short-time

out of the line of any track. Spectrograms and spectral pe\é@ues of the energy function, the average zera-crossing rate

tracks estimated with the proposed method for two segmentsag the fundamental frequency are computed on the fly with

song and speech signals are illustrated in Figs. 8 and 9, res icoming audio data. Whenever there is an abrupt change
0Ng P 9 : gs. o » FeSRitected in any of these three features, a segment boundary is
tively. The first segment is female vocal solo which contai

"Set. For the temporal curve of each feature, there are two ad-
seven notes sung as “5-1-6-4-3-1-2.” We can see that the plgmI

X . ing sliding windows installed with the average feature value
and the duration of each note are clearly reflected in the detec puted within each window as illustrated in Fig. 10. The

peak tracks. Each note lasts for about 0.7-0.8 s. Harmonic traglging windows proceed together with each newly computed

range from the fundamental frequency at about 225-400 Hz §3ture value, and the corresponding average valiegw1)

t0 5000 Hz, and are in aripple-like shape. The second segmen{ig| Avc(w2) are updated. These two values are compared.

female speech having music and other noise in the backgroupghenever there is a big difference between them, an abrupt
However, the speech signal is dominant in the spectrogram, atéinge is claimed to be detected at the common edge of the
spectral peak tracks are nicely detected despite the interferena@. windows (i.e., the point E). We choose the length of each

The harmonic peak tracks are shorter than those in the song seigrdow to be 100 feature samples, which corresponds to about
ment with a pitch level of 150-250 Hz. 1 s in time with a sampling rate of 11 025 Hz.
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Fig. 9. Spectrogram and spectral peak tracks of female speech with music and noise in the background.

Examples of boundary detection within the temporal curvelsresholding. However, it is found that the energy level of some
ofthe short-time energy function and the short-time fundamentaise pieces is not lower than that of some music pieces. The
frequency are shownin Fig. 11. Since the temporal evolution pa¢ason that we can hear the music while may not notice the noise
tern and the range of amplitudes of these short- time featuresiar¢hat the frequency-level of the noise is much lower. Thus,
different for speech, music, environmental sound and so on, dwee use both energy and ZCR measures to detect silence. If the
matic changes can be detected atthe boundaries of different agtiort-time energy function is continuously lower than a certain

types by applying statistical analysis to these features. set of thresholds (there may be durations in which the energy
is higher than the threshold, but the durations should be short
B. Classification of Each Segment enough and far apart from each other), or if most short-time av-

erage zero-crossing rates in the segment are lower than certain
After segment boundaries are detected, each segmentsef of thresholds, then the segment is indexed as “silence.”

sound is classified into one of the basic audio types according2) Separating Sounds with/without Music Componerss:

to the procedure as illustrated in Fig. 1. Details about each stapserved from movies and video programs, music is an impor-

in the classification process are described in the following. tant type of audio component frequently appearing, either alone
1) Detecting Silence:The first step is to check whether theor as the background of speech or environmental sounds. There-

audio segment is silence or not. We define “silence” to be a sdgre, the nonsilence audio segments are first separated into two

ment of imperceptible audio, including unnoticeable noise amdtegories: with or without music components, by detecting con-

very short clicks. The normal way to detect silence is by energjpuous and stable frequency peaks from the power spectrum.
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Fig. 10. Setting sliding windows in the temporal curve of audio feature for boundary detection.
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Fig. 11. Boundary detection in the temporal curves of (a) short-time energy function and (b) short-time fundamental frequency.

The power spectrum is generated from AR model paramas having music components at that instant and to 0, otherwise.
ters of order 40, and is calculated once every 400 input saifhie ratio between the number of zeros in an index sequence and
ples. Each signal frame for computing the spectrum contaitie total number of indices in the sequence can thus be a mea-
512 samples. If there are peaks detected in consecutive posgiement of the sound segment as having music components or
spectra which stay at about the same frequency level for a ceot (which is called “zero ratio”). The higher the ratio is, the less
tain period of time, this period of time is indexed as havingiusic components are contained in the sound. Shown in Fig. 12
music components. To avoid the influence from speech hare index sequences of several sound segments.
monic peaks or low frequency noise, only spectral peaks abovegy examining zero ratios of different types of audio, we have
500 Hz are considered since most music components argig following observations.
this range. Signal frames below a certain energy level are also
ignored. An index sequence is generated for each segment ofl) Speech:Although the speech signal contains harmonic
sound, i.e., the index value is set to 1 if the sound is detected components, the frequency peaks change faster and last
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Index sequences of music components detection in sound segments: (a) pure music, (b) pure speech, (c) speech with music backgromgd, and (d) so

for a shorter time than those in music. Zero ratios for 5) Speech with Music Background/hen the speech signal

speech segments are normally above 0.95.
Environmental SoundHarmonic and stable environ-
mental sounds are all indexed as having music com-
ponents, while nonharmonic sounds are all indexed as
not having music components. However, there are some
exceptional cases in between such as certain harmonic
and nonharmonic mixed sounds, for which we have to add
rules in the program to properly place them.

Pure Music:Zero ratios for all pure music segments are
below 0.3. Indexing errors normally come from short
notes, low volume or low frequency parts, nonharmonic
components, and the intermissions between notes.

is strong, the background music is normally hidden and
can not be detected. However, music components can be
detected in the intermission periods of speech or when
music signal becomes stronger. We make the distinction
of the following two cases. In the first case, music is
stronger or there are many intermissions in speech so that
music is a prominent part of the sound, the zero ratios are
below 0.6. In the second case, music is weak while speech
is strong and continuous, so that speech is the major com-
ponent and music may be ignored. Zero ratios are higher
than 0.8 in such a case.

Thus, based on a threshold for the zero ratio at about 0.7

Song:Most song segments have zero ratios below 0.fpgether with some other rules, audio segments can be sepa-
Those parts not detected as having music componentsriged into two categories as desired. The first category contains
sultfrom: peaktracks thatshape like ripplesinstead of linégrmonic and stable environmental sound, pure music, song,
whenthe noteislong, the intermissions between notes, Igyeech with the music background and environmental sound
volume or low frequency sounds. When the ripple- shapeth the music background. In the second category, there are
peaktracks are detected and indexed as music componepise speech and nonharmonic environmental sound. Further

zeroratios for songs are significantly reduced.

classification is done within each category.
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3) Detecting Harmonic Environmental Soundé/ithin spectral peak tracks satisfy these criteria, the segment is indexed
the first category, environmental sounds which are harmoras “speech with music background.” Finally, what left in the first
and stable are separated out first. The temporal curve of taegory are the segments which have music components but do
short-time fundamental frequency is checked. If most parts w6t meet the criteria for any of the above audio types. They are
the curve are harmonic, and the fundamental frequency is fixediexed as “environmental sound with music background.”
at one particular value, the segment is indexed as “harmonic7) Distinguishing Pure Speechithin the second category,
and unchanged.” A typical example of this type is the sourglire speech is first distinguished and five aspects of conditions
of touch-tone. If the fundamental frequency of a sound cligre checked. The firstaspectis the relation between the temporal
changes over time but only with several values, it is indexed aegrves of ZCR and energy function. In speech segments, the
“harmonic and stable.” Examples of this type include the sound€R curve has peaks for unvoiced components and troughs for
of doorbell and pager. This classification step is performed hereiced components, while the energy curve has peaks for voiced
as a screening process for harmonic environmental sounds¢egponents and troughs for unvoiced components. Thus, there
that they will not interfere with the differentiation of music. IS @ compensative relation between them. We clip both ZCR

4) Distinguishing Pure Music:Pure music is distinguished and energy curves at one third of the maximum amplitude and
based on statistical analyzes of the ZCR and SFuF curvEgnove the lower parts so that only peaks of the two curves
Four aspects are checked: the degree of being harmonic, Wik remain. Then, the inner product of the two residual curves
degree of the fundamental frequency’s concentration on certifirfalculated. This product is normally near to zero for speech
values during a period of time, the variance of the avera§gdments because the peaks appear at different times in the two
zero-crossing rate, and the range of amplitude of the averdgives, while itis much larger for other types of audio.
zero-crossing rate. For each aspect, there is one empirical he second aspect is the shape of ZCR curve. For speech, the
threshold set and a decision value defined. If the threshold4§R curve has a stable and low baseline with peaks above it.
reached, the decision value is set to 1; otherwise, it is seti§ define the baseline to be the linking line of lowest points
a fraction between 0 and 1 according to the distance to tRktroughs in the ZCR curve. The mean and variance of the
threshold. The four decision values are averaged with pre(lj‘)@_sellne are calculated. The parameters (amplitude, width, and
termined weights to derive a total probability of the segment@12rPness) and the appearance frequency of the peaks are also

being pure music. For an audio segment to be indexed as upﬁpé15idered. The third and fourth aspects are the variance and the

music,” this probability should be above a certain threshold af@g9€ of amplitude of the ZCR curve, respectively. Contrary to

at least three of the decision values should be above 0.5. music segments where the vgriance and the range of amplitude
5) Distinguishing SongsUp to this step, what are left in are normally lower than certain thresholds, a typical speech seg-

the first category include the sound segments of song, speg& nt has a variance and a range of amplitude that are higher than

with music background and environmental sound with musfgrtainthresholds. The fifth aspect is the fundamental frequency
perty. As speech is harmonic and nonharmonic mixed, it has

background. We extract the spectral peak tracks of these s@rgﬁ o . .
armony percentage within a certain range. There is also re-

ments, and differentiate the three audio types based on morp 10" 1 between the SFUF curve and the energy curve, ie., the

logical analyzes of these tracks. The song segments are CrP%rr'monic arts in SFuF correspond to peaks in the energy curve
acterized by one of the three features: ripple-shaped harmonic. P P P 9y

oo -while the zero parts in SFuF correspond to troughs in the energy
peak tracks (due to the vibration of vocal chords), tracks Wh'(\é\% rve. A decision value, which is a fraction between 0 and 1, is

are of longer durations compared to those in speech, and tra ) ) :
which have a fundamental frequency higher than 300 Hz. Tﬁ—gﬁned for each of the five aspects. The weighted average of

¢ track hecked wheth f th three f ese decision values represent the possibility of the segment’s
groups of fracks are checked whether any of these » ree ,8_ ing speech. When the possibility is above a certain threshold
tures are matched. The segment will be indexed as “song

ither th £ durati i which the h , K ﬁl?d at least three of the decision values are above 0.5, the seg-
either the sum of durations in which the harmonic peak tracks, .+ is indexed as “oure speech.”

satisfy one of the features gets to a certain amount, or its comg) Classifying Nonharmonic Environmental Soundde

parisqn to the total length of the segment reaches acer.tain rafiQy step is to classify what is left in the second category into
The ripple-shaped tracks are detected by taking the first-or e type of nonharmonic environmental sound as the following.
difference of the track and checking the pattern of the resulted

sequence. One thing to point out is that while some musical in-1) If either the energy function curve or the ZCR curve has
struments such as violin may also generate ripple-shaped peak peaks which have approximately equal intervals between
tracks; they are, however, normally at higher frequency bands.  neighboring peaks, the segment is indexetbasodic or

6) Separating Speech/Environmental Sound with Music  quasiperiodic”. Examples of this type include the sounds
Background: According to [21], “when sounds with peaked of clock tick and footstep.
spectra are mixed, energy from one or other source generally2) If the percentage of harmonic parts in the SFuF curve is
dominates each channel.” Therefore, even though there is music  within a certain range (lower than the threshold for music,
inthe background, as long as the speechis strong, harmonic peak but higher than the threshold for nonharmonic sound),
tracks of the speech signal can be detected in spite of the exis- the segment is indexed &sarmonic and nonharmonic
tence of music components. We check the groups of tracks to see  mixed”. For example, the sound of train horn, which is
whether they concentrate in the lower-to-mid frequency bands  harmonic, appears with a nonharmonic background. Also,
(with fundamental frequencies between 100 to 300 Hz) and have  the sound of cough consists of both harmonic and nonhar-
lengths within a certain range. If there are durations in whichthe ~ monic components.
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3) Ifthe ZCR values are within a relatively small range com- TABLE |
pared to the absolute range of the frequency distribution, CLASSIFICATION RESULTS FORAUDIO CATEGORIES
the segment is indexed dsonharmonic and stable” Zudic Category Test Samples | _ Correct Samples False Alarms
One example is the sound of birds’ cry, which is nonhar_ Number | Number | Sensitivity | Number | Recall
monic but its ZCR curve is concentrated in the range G smmomms - g
80—120 with an absolute range of 150. Without music components 800 800 100% 18 97.8%

4) Finally, if the segment does not satisfy any of the above
conditions, itis indexed &monharmonic and irregular”. TABLE Il
Most environmental sounds belong to this type, such as CLASSIFICATION RESULTS FORBASIC AUDIO TYPES
the sounds of thunder, earthquake, and fire.

Audio Type Test Samples Correct Samples False Alarms
. Number Number | Sensitivity | Number | Recall
C. Postprocessing Pure speech 200 182 91% 16 | 91.9%
. . . . Pure music 200 189 94.5% 4 97.9%
The postprocessing step is to reduce possible segmentatseng 50 2 8% ) 95.5%
and classification errors. We have adjusted the segmentatiSpeech with MBG 50 43 86% 5 |89.6%
. .. Sound effect with MBG 40 35 87.5% 6 85.4%
algorithm to be sensitive enough to detect all abrupt changémmmomc sound effect 0 36 0% ) 100%
Thus, itis possible that one continuous scene is broken into seNon-harmonic sound effect 600 591 98.5% 29 | 953%

eral segments. For example, one music piece may be broken into

several segments due to abrupt changes in the energy curve, 4qifl, clips recorded from movies or video programs. These
some small segments may even be misclassified as *harmogic.e |ast from several minutes to half an hour, and contain
and stable environmental sound” because of the unchanged g, ;s types of audio. They are used to test the performances
in the segment. Through post-processing, these segments a8t diovisual data segmentation and indexing.

be combined to other segments and are reindexed based on their

contextual relations. B. Generic Audio Data Classification Results

Here are some examples of heuristic rules used in the pOSt:I'he roposed classification approach for generic audio data
processing step: if a “silence” segment is shorter than 2 s an prop pp 9

. . . ghieved an accuracy rate of more than 90% by using a set of
the two segments prior and next to it have the same index, o . )
00 audio pieces including all types of sound selected from

three se_gments are ”_‘ergfd Into one and_lnd?xed“as the S#HB%udio database described above. Listed in Tables | and Il are
as the first segment; if a “harmonic and fixed” or harmon@e

.o ) sults at the two classification hierarchies, respectively, where
gnd stable vfnvwonmept”al s?‘und se gmentis s.h(.)rterthan 5,5 @@déitivity rate is defined as the ratio between the number of
Is nextto a pure TUS'C or 'song segment, ,'t IS 'merged ,'nteorrectly classified samples and the actual number of samples
that segment; if a *harmonic and nonharmonic mixed envirofl; one category, and recall rate is the ratio between the number
mental sound”is shorter than 2 s and is between two segment§pf o yectly indexed samples and the total number of samples
“spe_ech with music background” or “environmental s.ound Withs indexed in one audio type (including false alarms). “MBG”

music background,” the three segments are merged into one @ghe apbreviation for “music background.” In order to obtain

indexed according to the first segment. threshold values which are used in the heuristic procedures,
10-50% of samples in each audio type were randomly selected

VI. EXPERIMENTAL RESULTS AND DISCUSSION to form a training set (i.e., there were 20-60 samples from each

A. Audio Database type). The threshold values were determined step by step ac-

We h buil . dio datab b q cording to the segmentation and indexing process as outlined in
e have built a generic audio database to be used as &igion v And in each step, an iterative procedure of modifying

test_bed of the proposed Ialgorlthm:_s, which conS|s_ts _Of the_ f%Jhd testing the threshold values was conducted until an optimal
lowing contents: 1000 clips of environmental audio including, ¢ it was achieved. Then, the whole data set was used to testify
the sounds of applause, animal, footstep, raining, explosiQRe c|assification performances.

knocking, vehicles and so on; 100 pieces of classical MusiCEyom Table I, we can see that sounds without music com-
played with ten kinds of instruments, 100 other music piecg®nents are correctly categorized since they all have a rather
of different styles (classic, jazz, blues, light music, Chinese aRghh zero ratio. For sounds in the first category, there are
Indian folk music, etc.); 50 clips of songs sung by male, feqassification errors with some song segments (especially those
male, or children, with or without musical instrument accomgithout instrument accompaniment) and some speech with
paniment; 200 speech pieces in different languages (Englighusic background segments in which the music components
German, French, Spanish, Japanese, Chinese, etc.) and withgt-weak. However, with hybrid-type sounds and sound effects
ferent levels of noise; 50 clips of speech with the music backwolved here, the overall accuracy for categorizing music/non-
ground; 40 clips of environmental sound with the music backausic sounds is still comparable to previous results for pure
ground; and 20 samples of silence segment with different typgseech/music discrimination tasks.

of low-volume noise (clicks, brown noise, pink noise and white Within the first category, several harmonic sound effects are
noise). These short pieces of sound clips (with duration froimdexed as “pure music,” and there are music segments misclas-
several seconds to more than 1 min) are used to test the awgtfied as song, speech with MBG or sound effect with MBG. A
classification performances. We also collected dozens of long@uple of song segments which lack the ripple-shaped spectral
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Fig. 13. Demonstration of generic audio data classification.
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Fig. 14. Demonstration of audiovisual data segmentation.

peak tracks are taken as sound effect with MBG. For the secdhd training set, which is 90.7%. A demonstration program was

category, apart from false alarms from the first category, themeade for the online audio classification, which shows the wave-

are also 27 misclassifications between pure speech and nonfam, the audio features and the classification result for a given
monic environmental sound segments. It should be noted tkatind, as illustrated in Fig. 13.

most mistakes result from the very noisy background in some

speech, music and song segments. While our approach is fér-Audiovisual Data Segmentation and Indexing Results

mally robust in distinguishing speech and music with a rather\e tested the segmentation procedure with audio clips
high level of noise, the algorithm needs to be further improvedcorded from movies and video programs. With Pentium333

so that speech and music components are correctly detegefwindows NT, segmentation and classification tasks can be
as long as their contents can be recognized by human percgghieved together with less than one eighth of the time required
tion. On the whole, the ratio of the total number of correctlyo play the audio clip. We made a demonstration program for

indexed samples in the eight audio types (i.e., audio types lisi@tine audiovisual data segmentation and indexing as shown in
in Table Il plus silence) to the size of the data set reaches 94.8%g. 14, where different types of audio data are represented by
We also calculated the accuracy rate of samples not includedlifferent colors. Displayed on this figure is the segmentation
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Fig. 15. Segmentation of a movie audio clip.

and indexing result for a 42-s long audio clip recorded from VII. CONCLUSION AND FUTURE WORK
a Spanish cartoon video called “Don Quijote de la Mancha.”
The first segment in this audio clip is song performed b
children and with musical instrument accompaniment, whi

is indexed as “song.” Then, after a period of silence which
is indexed as “silence,” there is a segment of female speeg

and it is indexed as “pure speech.” Afterwards, there is Ela*meworklstodetectwdeoshotchanges using histogram differ-

short pause indexed as “silence” and followed by a segmenteor}ce and motion vectorg, a_nd extract keyframes_to representeach
music which is indexed as “pure music.” Next, with the musi)é'deo sho_t. However, th|§ wsual-basec_j processing often Ie.ads 0
as background, comes the speech of an old male, and %fgr too fine segme_ntauon pf the audiovisual sequence W|th_ re-
segment is indexed as “speech with the music backgrounap‘em to the semantic meaning of data. For example, in the w_deq
Finally, the music stops, and there is speech of a boy whichSgduence o_fasong performance, there may be shots appearing in
indexed as “pure speech.” turn of the singer, of the band, of the audience, and of some other

For another example, an audio clip recorded from the mo\ﬁgsigngd views. According to the visua} information, f[hgse shots
“Washington Square” was segmented as illustrated in Fig. 1\/5|_II be indexed separately. But accord_lng to the audio informa-
In this 50-s long audio clip, there is first a segment of spee8fN: We know that they are actually within one performance of
spoken by a female (indexed as “pure speech”), then a Ség';_ong.'l'.herefore, in ourapproach.for video cpntent parsmg,'the
ment of screams by a group of people (indexed as “nonharmofifet Step is to conduct a segmentation of the video sequence into
and irregular environmental sound”), followed by a period gfemantic scenes pased on audm cues, and index each scene with
unrecognizable conversation of multiple people simultaneousf}e Proposed audio classification algorithms.
mixed with baby cry (indexed as the mix of harmonic and non- While current approaches for audio content analysis are nor-
harmonic sounds). Then, a low volume music appears in tiglly developed for specific scenarios, a generic scheme was
background (indexed as “environmental sound with music badrvestigated in this work to cover all sorts of audio signals, in-
ground”). Afterwards, there is a segment of music with very logtuding hybrid-type sounds and environmental sounds which
level environmental sounds as background (indexed as “p@@ important in many applications, but seldom considered in
music”). And finally, there is a short conversation between R{evious work. Four kinds of audio features including the energy
male and a female (indexed as “pure speech”). function, the average zero-crossing rate, the fundamental fre-

Besides the above two examples, we also performed exp@yency and the spectral peak track are analyzed to reveal differ-
iments on twenty or so other audio clips. In general, boungnces among different types of audio data. Methods are also pro-
aries between segments of different audio types are set quigsed for estimating the fundamental frequency and extracting
precisely with a precision within 1 s as compared to human p&pectral peak tracks from the AR model generated spectrum.
ception. Using human judgement as the ground truth, our algdased on audio feature analysis, a procedure for online segmen-
rithm is sensitive enough to detect more than 95% of audio tytagion and classification of the accompanying audio signal in au-
changes. As to the indexing accuracy, the result is similar to titiovisual data into twelve basic audio types was accomplished.
of the audio classification experiment described in last sectiofn accurate classification rate higher than 90% was achieved.
i.e., over 90% of the segments are correctly indexed. In the segmentation and indexing of audio data recorded from

A scheme for the automatic segmentation and indexing of au-
iovisual data based on audio content analysis was presented in
is paper. Previous work on video segmentation and annotation

as been mostly focused on the visual information. The common



ZHANG AND KUO: AUDIO CONTENT ANALYSIS FOR ONLINE AUDIOVISUAL DATA SEGMENTATION AND CLASSIFICATION

movies and video programs, segment boundaries were preciseby]
set, and each segment was properly annotated.

There are several related tasks to be conducted in the future.
We will first improve the audio classification procedure so as[21]
to make it more robust to all kinds of situations. For example
spectral peak tracks in the segments of chorus may be different
from those of solo songs, and may lack the ripple-shaped fedz23]
ture. We will also work on extracting audio features in the com-
pression domain (e.g., the MPEG bitstreams), since most digz4
ital audiovisual data available these days are in the compressed
format. Then, analysis results of the audio information will bej,5
integrated into those of the visual information and the caption in
vMeopmgmnmsoﬂmlaﬁMyMnamnmsyﬂemﬂvaeoconpﬂ
tent parsing can be achieved.

[27]
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