
1

Real-Time Transcription of Guitar Music
Michael Groble

mg2467

Abstract—MIDI guitar synthesizers currently exist to trans-
form the sound coming from the vibrating guitar strings to MIDI
events. These achieve high accuracy and real-time performance
through dedicated hardware. In particular, special pickups are
used to generate a single signal for each string and special
processing units convert the signals to MIDI events. This paper
explores the ability to achieve real-time transcription using a
standard pickup and a desktop computer instead of the special-
ized hardware. While we do not achieve accuracy comparable to
specialized hardware, we do achieve frame-level accuracy in the
range of published results with real-time speed.

I. INTRODUCTION

The Music Information Retrieval Evaluation eXchange
(MIREX) [3] includes an evaluation task called Multiple
Fundamental Frequency Estimation & Tracking task. The goal
of this task is to be able to process an audio signal containing
multiple simultaneous notes to extract a transcription of those
notes including pitch contours. Guitar to MIDI transcription
can be thought of as an instance of this type of problem.
In traditional systems, such guitars employ special pickups
which generate a separate signal for each string. The signal
processing in these cases is simplified since there is only one
note playing on one string at any instance, but it is still difficult
since results need to be generated in real-time and need to
account for variations in how or where notes are picked.

This paper explores the ability to perform guitar to MIDI
transcription using a standard pickup, meaning a monophonic
audio stream consisting of all notes played simultaneously
across all the strings of the guitar. This task is very similar to
the Multiple Fundamental Frequency Estimation & Tracking
task, but has some specific characteristics of its own. Sim-
plifying characteristics are that the audio signal is coming
from a single instrument (in other words a single timbre)
and that a guitar has a limited pitch range relative to other
instruments. Also, for purposes of this paper, string bending
is not considered which means the desired output is MIDI
pitch values, not arbitrary frequency values. It also differs in
that the MIREX task does not consider real-time performance.

The MIREX task is divided into two parts, a frame-by-
frame one which scores the predicted frequencies vs. actual
frequencies for each individual 10 msec segment of audio
and a note contour one which scores note onsets, offsets and
pitches between the predicted and actual values. This project
did not progress far enough to predict note onsets and offsets
so the results are limited to frame-by-frame analysis.

The MIREX 2007 results contain references to many dif-
ferent types of algorithms currently in use for this task. The
approach most similar in spirit to this paper is [4] which
treats the task as a classification one. Also similar is the
method introduced by [2] to iteratively determine simultaneous

notes. This paper introduces novel ways of training pitch
classification models, computing feature vectors and scoring
models against individual audio sample frames. These novel-
ties produce an algorithm which achieves frame-level precision
and recall numbers over 60% while maintaining real-time
performance, requiring less than 34 msec to process 1 second
of audio.

II. CORPUS

The task of estimating notes at the frame level, and a full
transcription, are both rather complicated with many different
performance measures which may be of interest. In order to
separate the complexity inherent in computing such measures
for real musical passages, two separate corpora are used in
this analysis. The first is a non-musical corpus of notes with
known polyphony. This corpus provides a simple baseline for
evaluating a wide range of processing approaches. The second
is a corpus of songs used to evaluate the algorithm in the full
complexity of a real setting.

A. Random Note Corpus

Logic Studio is a software package for audio composition
and performance available on Mac OS X. It includes a
sampling synthesizer called EXS24 and a number of sam-
pled instruments. The random note corpus consists of audio
clips generated from ten of the sampled guitars: “Acoustic
Harmonics”, “Classical Acoustic Guitar”, “Clean Electric Gui-
tar”, “Eighties Electric”, “Spanish Flamenco Guitar”, “Muted
Electric Guitar”, “Roundback Acoustic Guitar”, “Steel String
Acoustic”, “Sunburst Electric”, and “Twangy Electric”.

The sampled instruments contain multiple samples for each
note at different playing volumes. Across all ten guitars and all
volume levels, each note has 63 different samples. Two-second
audio clips were synthesized for each of these 63 groups and
for seven different tuning offsets (-15 cents, -10 cents, -5
cents, perfect tuning, +5 cents, +10 cents, +15 cents). These
clips are 16 bit PCM at 44.1 kHz sampling rate. These clips
were generated for 50 different notes, from B0 to C5 (this is
in Logic notation, not MIDI notation, the low E string, for
example, is E1 in Logic, or MIDI pitch 40). Finally, 2048
sample frames were extracted randomly within each of 10
different offset ranges into the two-second clip. The result is
a corpus of 220,500 frames, each 46.44 msec long spanning
a wide range of guitar types, note volumes, note tunings and
note offsets.

In addition to the single note case, these samples were
combined to generate 2-note and 3-note samples. In each
case, the individual samples were combined with others from
the same group (meaning same guitar and volume level), the



Table I
POLYPHONY DISTRIBUTION

Polyphony Frames Note-Frames
0 3,257 0
1 15,606 15,606
2 36,992 73,984
3 33,056 99,168
4 30,109 120,436
5 5,478 27,390
6 716 4,296
7 108 756
8 61 488
9 3 27

10 1 10
all 125,387 342,161

same offset range and the same tuning. The pitch values were
chosen randomly and resulted in over 100,000 frames for each
polyphony value.

B. Musical Corpus

Unlike [4], where a mechanically-driven piano was used to
generate audio samples from MIDI files, there are not readily-
available systems to mechanically play a real guitar from
a MIDI file. Completely accurate transcription of real-audio
recordings is very time-consuming to generate. Consequently,
the musical audio samples were generated with the sampling
synthesizers as above. The musical corpus consists of 45 sound
files (16 bit PCM at 44.1 kHz as the prior corpus) synthesized
from MIDI files containing fingerstyle guitar arrangements.
Three of the files were captured from someone playing a guitar
synthesizer, while the others are hand-sequenced. The captured
files exhibit much more variation in timing and note velocities
than the sequenced ones do. Table VIII summarizes the 45
files and indicates the sampled instrument used in each case.
Table I describes the distribution of frames by the number of
simultaneous notes in the frame.

These numbers are considering notes which sound at least
20% of the frame duration as notes in the frame. A note is
considered to be sounding based solely on the note on events
within the MIDI file. In other words, if the MIDI duration
is 1 second, the note will count as sounding for roughly 22
consecutive frames, even if the volume of the sound dies to
an inaudible level due to the decay of the sound over that 1
second.

Note also that unison intervals, two notes sounding the same
pitch, are possible on the guitar, but are not considered in this
analysis. If multiple notes ever simultaneously sound the same
pitch, they are counted as a single note.

The MIDI files were found on the web and were modified
slightly for this analysis. First, all pitch bends were removed.
Second, the sampling synthesizer definitions treat certain ve-
locity ranges as special commands, for instance to play a
harmonic version of the note, to trill a note, or to include
string noises after the note. The velocities were modified so
that only the normal note played, as would be the case if
the MIDI file were played through one of the non-sampling
synthesizers.

III. PERFORMANCE METRICS

The performance metrics used to evaluate the random note
corpus are very straight forward. In each case, a frame consists
of a predefined number of notes. The predicted notes are
compared to the true notes and any non-matching notes are
counted as substitutions (sub f ). Again, since the random notes
may include unison intervals, the actual metric compares
substitution errors between distinct pitches. The substitution
error is defined as the sum of substitutions over all frames
divided by the sum of polyphony (distinct pitches, poly f ) in
each frame.

Esub =
∑ f sub f

∑ f poly f
=

sub
poly

For the musical corpus, the algorithm needs to determine the
number of notes rather than being given the true polyphony.
In addition to substitutions, there is now the possibility of
insertions (ins f ) and deletions (del f ). Insertions count the
number of notes hypothesized by the algorithm greater than
the true number of notes while deletions count the number of
true notes greater than the number hypothesized. The MIREX
task refers to these respectively as “false alarms” and “misses”
and also references the quantities Acc and Etot defined below.

Eins =
∑ f ins f

∑ f poly f
=

ins
poly

= E f a

Edel =
∑ f del f

∑ f poly f
=

del
poly

= Emiss

Acc =
match

match+ ins+del

Etot =
sub+max(ins,del)

poly

where match f is the number hypothesized notes that are
correct in a given frame and poly f is the number of true
distinct pitches in a frame. Finally, recall R and precision P
can be defined in these terms by the following

R =
match

match+ sub+del
=

match
poly

P =
match

match+ sub+ ins

IV. FEATURES

The feature set was determined from analysis of Esub on
the single-note frames from the random note corpus. The
features are based on the magnitudes of the short-term Fourier
transform over the 2048 sample frames. The frame size was
chosen to be 2048 based on a desire to have temporal accuracy
no worse than the resulting 46 msec. Various shorter windows
sizes were chosen to determine to see if the full frame would
be required for the desired accuracy. Hann windows of 2048,
1024, 512 and 256 samples long were used. The 1024 sample
window caused a 5-time increase in Esub over the 2048 sample
window so the feature calculations use the entire 2048 sample
frame.



The next analysis was to determine how many frequency
bins would be required to achieve the best results. The fewer
number of features means the faster real-time processing,
but potentially poorer performance. On the single-note data,
performance leveled off above 3 kHz, for safety, I chose
features up to about 4 kHz which means the magnitudes of
the first 180 frequency bins from the STFT.

V. NOTE PREDICTION

As in [4], note prediction is treated as a classification
problem, instead of a problem of estimating the fundamental
frequencies. This limits the resulting algorithm to be applicable
to only those performances with fixed pitches (i.e. no string
bends). To do so, each pitch has a model associated with it.
Frames are scored against these models to determine which
pitches are present in the frame. In the analysis for both
corpora, the model used to predict a frame from a particular
guitar is generated from all other guitars excluding the one
used to generate the frame. For the random note corpus, this
results in a form of n-fold testing where the samples from one
guitar are tested against a model learned from the samples of
all other guitars.

[4] used an SVM to train a classifier. On a subset of the
single-note frames SVMs gave a slightly better classification
error, but the training process was too slow to be useful
with 50 classes and over 200,000 samples. Scaled averaging
gave slightly worse classification performance, but much better
speed. With scaled averaging, the model for a particular pitch
is generated by scaling each individual feature vector at that
pitch to have a unit height, averaging the unit height vectors
together, and normalizing the resulting average vector to have
unit length. More formally, the model vector mp for a specific
pitch p is computed from samples xi with pitch labels yi as
follows

ap = ∑
j :y j=p

x j∥∥x j
∥∥

∞

mp =
ap∥∥ap

∥∥
A. Single Note

In the single note case, the problem is simply that of deter-
mining which pitch model is closest, or scores best compared
to the frame. One approach from information retrieval is to use
cosine similarity, the dot product of two unit-length feature
vectors. This approach provides reasonable results on the
single-note samples of the random note corpus, Esub = 2.2%.
Slightly better results are obtained by summing the absolute
difference between the unit-length feature vectors, resulting in
Esub = 1.8%. Specifically, the predicted pitch pest for a feature
vector x is the one satisfying

pest = argmin
p

∥∥∥∥ x
‖x‖
−mp

∥∥∥∥
1

(1)

Quite a number of other feature normalizations, and scoring
functions were evaluated (including only comparing bins or
ranges of the feature vector based on the pitch corresponding
to mp as in [1]), but none performed better than this.

B. Multiple Note

For multiple notes, the note prediction problem becomes
more difficult. With the random note corpus, the number of
notes was known before hand so the algorithm had a fixed
number it is trying to predict. [2] describes an iterative method,
where the single best scoring note is determined from the
feature vector, then the feature vector is modified to “remove”
the effects of that pitch. The remainder is then rescored until
the desired number of notes have been predicted. With the
non-linear scoring metric in (1), a slightly different approach is
required. In particular, a base profile basei at iteration i stores
the feature vector representing the pitches which have already
been detected for the current frame. Pitches for iteration i are
then scored as follows with the initial base set to a zero vector
base0 = 0.

scorei
p =

∥∥∥∥∥ x
‖x‖
−

mp +basei−1∥∥mp +basei−1
∥∥

∥∥∥∥∥
1

pi
est = argmin

p
scorei

p

basei = basei−1 +mpi
est

Additionally, each iteration does not need to include models
of just single pitches. As will be shown in Section VI, analysis
from the random note corpus shows that all of the true notes
show up at relatively shallow depth within the ranked score
list from the very first iteration. The ranked list from the
scoring therefore provides information for choosing multiple
pitch combinations at an iteration, rather than just choosing a
single pitch at each iteration. This has the benefit of reducing
the number of scorings that need to be made in total.

In combined scoring, each iteration starts by computing
a ranked list of pitch scores scorei. Note combinations are
generated by combining highly ranked pitches and scoring
the combination. If the best combination scores better than
the best single-pitch score, the combined pitches are added to
the estimated pitches and the corresponding combined feature
vector added to the base.

Finally, for multiple note estimation, an algorithm needs
to determine how many pitches to hypothesize. The approach
described in this paper uses a sentinel pitch determined from
observation of the empirical results. In particular, the algorithm
often selects the highest pitch model for the note at the
boundary between the correct pitches and incorrect ones. The
intuition is that this pitch, being the highest, has the most
number of individual feature vector elements close to 0. It has
the fewest, most spread out peaks of all the pitches. Choosing
this as a cutoff is effectively the same as choosing the cutoff
to be the case when the remainder of the frame is closer to
the zero vector than it is to all other pitches in the model. The
hypothesis that the zero vector would perform this way has yet
to be validated. For the results presented below, the iteration
is terminated at the point where the algorithm determines the
best scoring model is the one corresponding to the highest
pitch value.



Table II
RANDOM NOTES, SINGLE RANKING

mean rank
notes Esub note 1 note 2 note 3

1 1.8% 1.043 - -
2 23.3% 1.161 5.079 -
3 41.8% 1.394 5.462 10.769

Table III
RANDOM NOTES, RE-RANKED

Esub
notes none iterative exhaustive

2 23.3% 11.9% 7.6%
3 41.8% 22.3% 13.5%

VI. RESULTS

A. Random Note Corpus

Table II shows the result for the random note corpus when
the hypothesized notes are taken to be the top-n notes from a
single scoring as in 1. The Esub column shows the substitution
error and the mean rank columns shows the rank averaged over
all test samples required to find the notes matching the true
ones. The mean ranks show that, even with multiple notes, the
top-ranked note is frequently a true note in the frame.

Table III shows the results on this corpus for two different
iterative approaches in addition to the baseline of a single
ranking. In the iterative column, the error is shown for the
case where a single note is predicted at each iteration and that
note is taken as the top ranked one. The exhaustive column
shows the case where the notes are ranked once and then
combinations of notes from the ranked list are scored to find
the best match. In the 2 note case, all combinations of note
pairs between the top 3 notes and the top 10 notes are scored to
determine the best pair. In the 3 note case, all triples between
the top 3, top 10 and top 20 were tried. These combined notes
were generated by adding the single-note model vectors and
re-normalizing to a unit vector.

The results show that the iterative method cuts the error
in half compared to the single ranking while the exhaustive
method cuts the error to a third of the single ranking.

B. Musical Corpus

For the musical corpus, two different approaches are re-
ported. The first case is the iterative method where one note
is predicted at each iteration. The second case is a combined
approach where at each iteration, all notes are scored. Pairs are
generated from the ranked list, again using depths of top 3 and
top 10, and the pairs are scored. In this case, in addition to the
single-note models, training data was used to generate note-
pair models. Feature vectors for note combinations are not the
same as simply adding the feature vectors together. The pair
data provides a more accurate profile than the individual ones,
although does not accommodate different note volume levels
as the single iterative case can.

The results are tabulated separately for frames based on the
amount of polyphony within them (again, defined as notes
sounding for more than 20% of the frame duration). Table

Table IV
MUSICAL NOTES, ITERATIVE

Poly P R Acc Etot Esub Eins Edel

1 0.85 0.88 0.78 0.15 0.01 0.14 0.11
2 0.83 0.73 0.72 0.27 0.06 0.08 0.21
3 0.71 0.52 0.61 0.48 0.19 0.03 0.30
4 0.64 0.41 0.52 0.59 0.23 0.01 0.37
5 0.56 0.32 0.42 0.68 0.24 0.01 0.43
6 0.51 0.26 0.34 0.74 0.25 0.00 0.49
7 0.46 0.21 0.28 0.79 0.25 0.00 0.54
8 0.48 0.23 0.30 0.77 0.24 0.00 0.53
9 0.64 0.26 0.30 0.74 0.15 0.00 0.59

10 0.75 0.30 0.33 0.70 0.10 0.00 0.60
all 0.71 0.52 0.60 0.48 0.17 0.04 0.31

Table V
MUSICAL NOTES, COMBINED

Poly P R Acc Etot Esub Eins Edel

1 0.75 0.88 0.69 0.29 0.01 0.28 0.11
2 0.76 0.79 0.68 0.25 0.05 0.20 0.16
3 0.64 0.61 0.62 0.39 0.18 0.16 0.21
4 0.60 0.52 0.64 0.48 0.27 0.08 0.22
5 0.54 0.43 0.58 0.57 0.31 0.06 0.26
6 0.47 0.35 0.58 0.65 0.40 0.00 0.26
7 0.39 0.27 0.46 0.73 0.42 0.00 0.31
8 0.43 0.26 0.41 0.74 0.35 0.00 0.39
9 0.69 0.41 0.50 0.59 0.19 0.00 0.41

10 0.50 0.30 0.43 0.70 0.30 0.00 0.40
all 0.65 0.61 0.64 0.39 0.19 0.14 0.20

IV shows the single iterative results while Table V shows the
combined iterative results. As can be seen in the summary,
the main difference between these two approaches is that
the single iterative method provides better precision, making
extremely few insertion errors, while the combined approach
provides better recall at the expense of worse precision. The
recall numbers of the combined approach really show benefit
in the frames with high polyphony while the precision numbers
of the combined approach show the biggest detriment in the
frames with low polyphony. Insertion errors are larger for the
combined approach in these low polyphony frames also.

The results show quite a wide range of values across the
different songs. Table VI shows some individual song details
from the combined case. The table is ranked by decreasing
value of precision. The group at the top shows the 5 highest
precision songs, the group on the bottom shows the 5 lowest
precision songs and the group in the middle shows the three
songs which have MIDI files captured from someone really
playing a guitar. These captured performances happened to
fall in the middle of the pack.

As the table show, the results vary over a large range, from
greater than 80% precision in the best case to under 40% in
the worst. The last columns in the table attempt to explain
some of the differences. The g column describes whether the
song was synthesized using either an acoustic guitar (A) or an
electric one (E). The polyavg column describes the polyphony
level averaged across all frames in the song and the duravg
column describes the note duration in seconds averaged over
every note in the song.

While a clear-cut explanation is not evident, some gener-
alities appear. In particular, the songs with lower polyphony,



Table VII
RAGPICKIN ROBUSTNESS

Test P R Acc Etot Esub Eins Edel

Plain 0.57 0.47 0.55 0.53 0.25 0.10 0.28
Detuned 0.56 0.47 0.56 0.53 0.26 0.11 0.26

Piano 0.59 0.63 0.60 0.44 0.20 0.24 0.17
Brass 0.47 0.65 0.57 0.74 0.29 0.45 0.06
Vibes 0.26 0.08 0.09 0.92 0.17 0.07 0.75

shorter notes and played with electric guitars (and hence have
notes with longer sustain) do better than songs with higher
polyphony, longer notes and played with shorter sustaining
acoustic guitars. The captured songs being in the middle of the
pack potentially means that the high variation in note timing
and velocity are not significant performance factors for the
algorithm, however this sample size is possibly too small to
be of statistical significance.

C. Robustness Analysis

As a final experiment, the ragpickin song was used for
model robustness testing. This song had a MIDI file captured
from someone playing a guitar. Further, it had each separate
string as a separate track in the file. The first experiment was
detuning the strings as they would be on a real guitar. The
specific detuning used in the experiment was: low E, -5 cents;
A, +1 cents; D, -6 cents; G, +12 cents; B, -4 cents; high E,
+8 cents.

The other model robustness experiment was to synthesize
the song using other instruments. In particular using a pi-
ano (the “Steinway Grand Piano” instrument in the EXS24
sampling synthesizer), brass (“Trumpets” for the high notes
and “Tuba Solo” for the low), and vibraphone (“Vibraphone”).
These songs were then estimated using the same guitar model
used in the default case for this song (the Clean Electric Guitar
model, meaning the model from all other guitars excluding this
one).

Table VII show the results. There is virtually no difference
between the plain and detuned versions. Somewhat surprising,
the piano and brass versions of the song performed better than
the guitar version of the song, even though the model used
was the corresponding guitar model. Listening to the audio
samples, the piano has more sustain and the brass significantly
more sustain than the guitar. Both show much improved
recall over the guitar baseline which is potentially due to this
increased sustain. Precision improves slightly for the piano,
but decreases for brass. This potentially is explained by the
difference in harmonic profile between the string instruments
and the wind ones. Finally, the audio of the vibraphone
version clearly indicates the different harmonic profile of the
hammered notes as compared to the guitar. The results show
very clearly the inadequacy of the guitar model to predict
vibraphone notes.

D. Real-Time Performance

These results were generated by a stand alone application
which reads in the audio file, the model files and writes out

the predicted notes on a frame-by-frame basis. The single-
note model is learned in time that is linear in the number of
samples and has size that is linear in the number of pitches.
The single note model was less than 40 KB in size (binary,
uncompressed) while the pair-note model was less than 1 MB
in size.

The tests were run on a 2.8 GHz dual Quad-Core Xeon Mac
Pro with a single-threaded application. Including the overhead
of reading all the music and model files and writing the
prediction outputs, the single iterative case took 109 seconds
to process the roughly 97 minutes of audio while the combined
case took less than 198 seconds. This translates to an average
of 0.9 msec for the iterative case and 1.6 msec for the
combined case to process each 46.44 msec frame of audio.

The results show the resulting algorithm is completely
adequate for real-time use, and the nature of the algorithm
supports parallelization to further reduce latency if needed.

VII. CONCLUSION

From the results so far, specialized guitar to MIDI transcrip-
tion hardware does not have anything to fear from standard
pickup approaches. The isolation of a single note per audio
channel is a significant advantage. What is promising is that
the results of this paper show it is possible to obtain reasonable
results at real-time processing speeds.

The results also show how much variation exists in perfor-
mance of these systems to given song segments. The MIREX
2007 results show a similar wide variation even in the best
performing algorithm. It is encouraging to see that while the
best speed results from MIREX is 271 seconds of processing
time for 840 seconds of audio, the algorithms described in this
paper would process that same amount of audio in less than
30 seconds (although this is not apples-to-apples comparison
since the computer specs differ).

It would be very interesting to see how this approach
performs on the MIREX corpus. Since the performance on the
the musical corpus in this paper improves when the audio is
generated from pianos, even when the model is learned from
a guitar, it may be that the performance similarly improves
on the MIREX corpus. Alternately, the specifics of the songs
cause quite a variability in the results and it may be that there
are fundamentally “harder” segments in the MIREX corpus.
Finally, the MIREX corpus truth values are determined by
hand annotation of when particular note amplitudes decay
lower than a threshold. The corpus used in this paper does
no such compensation for decay and assumes (incorrectly at
times) that a note is always at a detectable amplitude over
the entire notated duration from the MIDI file. This provides
another potential for better performance on the MIREX corpus.
Finally, another uncertainty comes from the fact that the
MIREX site does also not describe how notes which last a
fragment of a frame are counted. [4] provides a corpus, but
unfortunately the audio samples are not at the 44 kHz sampling
rate required by the current implementation. Application of the
approach in this paper to the MIREX corpus would potentially
require training different models than just the existing guitar
ones and would require creating pitch models over a wider
range of pitches than has been done for the guitar analysis.



Table VI
MUSICAL NOTES, COMBINED, SONG DETAIL

Song P R Acc Etot Esub Eins Edel g polyavg duravg

cavatina 0.82 0.52 0.52 0.48 0.06 0.06 0.42 E 2.32 0.55
blakerg1 0.81 0.81 0.78 0.19 0.07 0.12 0.12 E 2.36 0.33

sweet_geogia_brown 0.79 0.85 0.78 0.22 0.06 0.16 0.08 E 2.59 0.44
watermelonman 0.79 0.84 0.79 0.23 0.08 0.14 0.08 E 2.40 0.63

two_for_the_road 0.78 0.78 0.78 0.22 0.11 0.11 0.11 E 3.24 0.81
lazybird 0.59 0.46 0.52 0.54 0.22 0.11 0.32 E 2.49 0.47
ragpickin 0.57 0.47 0.55 0.53 0.25 0.10 0.28 E 2.95 0.46
porkpie 0.56 0.54 0.59 0.46 0.25 0.17 0.20 E 2.21 0.38

oh_lady_be_good 0.46 0.44 0.53 0.56 0.34 0.16 0.22 A 3.02 0.57
blueingreen 0.44 0.40 0.63 0.60 0.44 0.07 0.16 E 3.76 1.15

on_the_sunny_side 0.43 0.35 0.47 0.65 0.36 0.11 0.29 A 3.22 0.63
atico 0.43 0.42 0.50 0.58 0.36 0.20 0.22 A 2.29 0.40

roundmidnight 0.37 0.26 0.36 0.74 0.36 0.08 0.38 A 2.88 1.01

REFERENCES

[1] Anssi Klapuri. Multiple fundamental frequency estimation by summing
harmonic amplitudes. In 7th International Conference on Music Infor-
mation Retrieval, pages 216–221, Victoria, Canada, 2006.

[2] A.P. Klapuri. Multiple fundamental frequency estimation based on
harmonicity and spectral smoothness. Speech and Audio Processing, IEEE
Transactions on, 11(6):804–816, Nov. 2003.

[3] MIREX. Music Information Retrieval Evaluation eXchange, 2007.
http://www.music-ir.org/mirex/2007.

[4] Graham E. Poliner and Daniel P. W. Ellis. A discriminative model
for polyphonic piano transcription. EURASIP J. Appl. Signal Process.,
2007(1):154–154, 2007.



Table VIII
MUSICAL CORPUS DETAILS

name frames note-frames type guitar avg polyphony
aint_misbehavin 1700 4600 sequenced Classical Acoustic Guitar 2.83

amazinggrace 1806 4929 sequenced Classical Acoustic Guitar 2.79
angeleye 2260 6559 sequenced Classical Acoustic Guitar 2.96

atico 4142 9115 sequenced Classical Acoustic Guitar 2.29
berniestune 1192 3061 sequenced Classical Acoustic Guitar 2.64
blackorph 4162 12903 sequenced Classical Acoustic Guitar 3.16
blakerg1 2517 5673 sequenced Clean Electric Guitar 2.36

blueingreen 990 3652 sequenced Clean Electric Guitar 3.76
californiadreamin 2431 7507 sequenced Clean Electric Guitar 3.15

caravan 2396 7150 sequenced Clean Electric Guitar 3.07
cavatina 4031 9031 sequenced Clean Electric Guitar 2.32

clairdelune 2253 7208 sequenced Clean Electric Guitar 3.26
desafinado 2799 10076 sequenced Eighties Electric 3.71

dolphindance 3415 12544 sequenced Eighties Electric 3.71
doxy 1604 4110 sequenced Eighties Electric 2.69

dreamof 2618 7292 sequenced Eighties Electric 2.87
eleanorigby 1962 6352 sequenced Eighties Electric 3.33

girlfromipanema 2153 6572 sequenced Spanish Flamenco Guitar 3.11
gpspells 3664 9591 sequenced Spanish Flamenco Guitar 2.74

highmoon 1065 3143 sequenced Spanish Flamenco Guitar 3.05
jordu 1808 4037 sequenced Spanish Flamenco Guitar 2.31

lazybird 4725 11327 captured Clean Electric Guitar 2.49
longwindingroad 2872 7904 sequenced Spanish Flamenco Guitar 2.83

meditation 2792 9380 sequenced Roundback Acoustic Guitar 3.44
missionimpossible 1384 3280 sequenced Roundback Acoustic Guitar 2.47

moonlight 2962 9539 sequenced Roundback Acoustic Guitar 3.27
mrjimi 1396 2730 sequenced Roundback Acoustic Guitar 2.00
nardis 2467 7831 sequenced Roundback Acoustic Guitar 3.21

oh_lady_be_good 3607 10623 sequenced Steel String Acoustic 3.02
on_the_sunny_side 2196 6701 sequenced Steel String Acoustic 3.22

peacheri 5311 13735 sequenced Steel String Acoustic 2.68
petitefl 2587 7895 sequenced Steel String Acoustic 3.11
porkpie 5529 11693 captured Clean Electric Guitar 2.21

ragpickin 2368 6686 captured Clean Electric Guitar 2.95
roundmidnight 2864 8096 sequenced Steel String Acoustic 2.88

sails 3158 6845 sequenced Sunburst Electric 2.28
someone2 2142 7058 sequenced Sunburst Electric 3.44
sunfslow 6163 12834 sequenced Sunburst Electric 2.19

sweet_geogia_brown 2515 6240 sequenced Sunburst Electric 2.59
tarrega_capricho_arabe 6078 13874 sequenced Sunburst Electric 2.34

teafortwo 1490 4049 sequenced Twangy Electric 2.78
two_for_the_road 4126 12903 sequenced Twangy Electric 3.24
watermelonman 1073 2515 sequenced Twangy Electric 2.40

wave 2309 7128 sequenced Twangy Electric 3.18
youarethesunshine 2305 6190 sequenced Twangy Electric 2.78


