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Abstract 

This paper introduces the IBM Expressive Speech Synthesis 
system. We describe recent work in improving the quality of 
our baseline text-to-speech system as well as extending our 
capabilities to generate expressive synthetic speech. We 
present results showing improved base quality, especially for 
sentences drawn from a limited domain. We also demonstrate 
our ability to convey good news and bad news, produce 
contrastive emphasis, and ask a question appropriately. In 
order to facilitate access to the expressive capabilities, we use 
some of our proposed extensions to the Speech Synthesis 
Markup Language (SSML). 

1.  Introduction 

As conversational speech interfaces proliferate, their 
usability becomes increasingly important.  Users want to 
execute transactions efficiently, without being subjected to 
tedious verbosity, weird sounds, or an excessive cognitive 
load.  Because current text-to-speech (TTS) systems don’t 
adequately satisfy these needs, today’s commercial 
applications tend to use synthesis sparingly, relying mainly on 
pre-recorded speech. 

One complaint about TTS is its “cluelessness”—it may 
deliver good intonation and prosody on most short items, but 
in longer passages, or in short but meaning-laden phrases, the 
system’s lack of understanding is often painfully obtrusive.  
To remedy this problem, the synthesizer 

1) needs semantic and stylistic information, not just a 
sequence of phonemes and syntactic information, and  

2) must be able to convey, through prosody and other 
paralinguistic devices, the additional meaning not explicit in 
the bare phoneme sequence. 

A synthesizer with enough world knowledge can extract 
meaning from some texts and speak them appropriately. The 
application designer, nevertheless, like a stage director, must 
always be able to override the speaker’s first attempt at 
interpretation.  For this reason, we don’t rely merely on the 
system’s own analysis. Instead, we enable application 
designers to supply extra information and directions through 
manually- or automatically-generated markup in the 
synthesizer input stream. 

In this paper we describe the IBM Expressive Speech 
Synthesis System, which embodies these ideas. Section 2 
describes the markup language. Section 3 is an overview of 
our entire TTS system. Section 4 describes two methods for 
expressive synthesis, and their respective domains of 
applicability. Section 5 concludes and discusses future 
challenges. 

2. Extended SSML 

The new markup required for the current experiment was 
implemented in the framework of our previously proposed 
extensions [1] to the Speech Synthesis Markup Language 

(SSML) [2]. Specifically, for these experiments we added the 
new attribute “style” to the “prosody” element. 

Styles, such as “conveying good news,” affect not only 
pitch, timing and loudness, but also features not currently 
addressed by SSML, such as vocal-tract length and glottal 
waveform parameters. When the speaker smiles, for example, 
the effective vocal-tract length is smaller than when she 
pouts. Similarly, voice qualities such as breathiness and 
creakiness play an important role in expressive elocution, and 
are, therefore, also legitimate components of prosody [3]. 

Even if we had full control over all these low-level facets 
of prosody, it would still be a gargantuan task to build an 
expressive style like “good news” from them.  The difficulty 
would be comparable to that of painting a photo-realistic 
portrait given canvas, palette, and brushes. The need for 
higher-level attributes in the markup language is evident. 

In our experiments, therefore, we do not provide additional 
low-level attributes.  Rather, our “style” attribute accepts 
high-level specifications such as “good-news,” “bad-news” or 
“yes-no question”.  Thus, we handle marked-up text such as: 

<prosody style="good-news">You have received a free 
upgrade to <emphasis> first class! </emphasis> </prosody> 

or: 
<prosody style="bad-news">Your flight will be delayed at 

least four hours because of the typhoon.</prosody> 
For “emphasis,” the current SSML standard already 

provides suitable markup; in this paper we address the 
challenge of implementing it in the synthesizer. 

3. System Description 

3.1 Building the Voice Database 

We direct a professional speaker to record approximately 
15 hours of speech in a friendly, energetic style, henceforth 
referred to as neutral. The same speaker reads additional 
scripts, e.g. “conveying good news,” “conveying bad news,” 
and “asking yes-no questions,” each in the appropriate style. 
The process of building the voice database differs from our 
previous one [4] as follows. Each speech segment in the 
database is labeled by an attribute vector carrying linguistic 
and expressive information about that segment. For example, 
all speech segments from the “bad news” script are labeled to 
have a “style” element with value “bad news.” Fig. 1 shows 
part of the attribute vector defined in our system. 

 

Figure 1: Part of an example attribute vector. Each 
attribute element takes values from its shaded list. 
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The attribute vector definition is customizable to the type 
of the application as well as the availability of linguistic and 
expressive information of the database segments. For 
convenience, database segments not labeled for a certain 
attribute are given the default value of this attribute. 

3.2 Run-time Synthesis 

During synthesis, the input, which is in the form of an 
extended-SSML document, is processed by an XML parser. 
Resulting text is used to form a sequence of targets as 
described previously [4], each of which contains information 
about the energy, pitch, and duration to be used in the search. 
In the current system, the extended-SSML tags are used to 
form an attribute vector per target, analogous to the one used 
in the voice-database-building process to label the speech 
segments. 

In addition to the regular target cost function [4], an 
attribute cost function C(t,o) is introduced to penalize the 
usage of a speech segment labeled with attribute vector o 
when the target is labeled by an attribute vector t. This cost 
function is realized as follows. A cost matrix Ci is defined for 
each element i in the attribute vector. The cost element 
Ci[ti,oi] indicates the cost to select a speech segment labeled 
with the attribute oi when a target attribute ti is requested. The 
total attribute cost will be the summation of the individual 
elements’ attribute costs. That is, 
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where N is the size of the attribute vector. Table 1 shows an 
example of Ci[ti,oi] for the expressive style element of the 
attribute vector. The attribute cost is key to the corpus-driven 
method for generating expressive speech described in Section 
4.1. 

 
  Target 

  neutral good news bad news ... 

neutral 0.0 0.3 0.3 ... 

good news 0.7 0.0 1.0 ... 
bad news 0.7 Ci[ti,oi] 0.0 ... 
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Table 1: Example of an attribute cost matrix. Here, 0.7 is the 
cost of using a “good news” segment when the target label is 

“neutral.” 

The output speech is constructed from the search-generated 
segment sequence as follows. To avoid large pitch 
modification to the original signal, a piecewise linear 
connection of the observed end pitch of each selected segment 
is constructed. This contour is smoothed [4] to eliminate any 
rapid fluctuations which sound as if the speaker were shaking 
or distressed. Speech is then generated using a new algorithm, 
contiguous bypass, which aims to minimize distortion 
introduced by signal processing by bypassing this processing 
in cases in which the engine is using a sequence (“chunk”) of 
segments which were contiguous in the original recordings. 
Using a signal processing algorithm similar to Frequency 
Domain Pitch Synchronous Overlap Add [5], segments not 
belonging to contiguous chunks are then modified in pitch to 
match the smoothed pitch contour and, optionally, in duration 
to match the target duration. Contiguous chunks are broken 
into two parts, “internal” segments and “boundary” segments. 
The internal segments are copied sample by sample to the 

                                                 

output buffer, while boundary segments on either side provide 
a smooth transition between the sample-by-sample copy and 
our regular signal processing. This algorithm eliminates 
signal processing distortion in large contiguous segment 
chunks and provides a seamless transition to regular signal 
processing. The contiguous bypass algorithm is applied only 
to contiguous chunks that exceed a specified number of 
segments. This constraint prevents distortion resulting from 
switching too frequently between regular signal processing 
and sample-by-sample copying. The overall cost function is 
tuned to bias toward selecting long contiguous chunks; doing 
so makes the contiguous bypass algorithm more effective. 

3.3 Results 

In order to measure the improvements over our previous 
system, we conducted a listening test. The test material was 
presented to 12 male and 12 female native speakers of North 
American English. Stimuli consisted of 30 “neutral” 
sentences generated from each of three sources: our previous 
system, our new system, and natural speech from the corpus 
speaker.  We divided the test sentences into two categories: 
in-domain and out-of-domain. In-domain sentences contain 
material such as weather reports and travel information, 
where similar but not identical sentences were found in our 
original script. Out-of-domain sentences are general and bear 
less resemblance to the content of the corpus. 

All listeners heard all stimuli, with order randomized, and 
were asked to rate the overall quality of the speech they heard 
on a 1-to-7 scale. We measured our performance on the in-
domain and out-of-domain sentences separately, as shown in 
Table 2. Note that while we made good progress on out-of-
domain sentences, closing 12% of the gap between our 
system and natural speech, we made more striking 
improvement on sentences which were similar to the 
sentences in our corpus, closing 46% of the gap between our 
system and natural speech. That result is consistent with our 
expectations; the techniques described in this section aim to 
increase the length of contiguous passages retrieved from the 
database and to limit the processing, thereby increasing the 
naturalness, of those passages. In-domain sentences provide 
the opportunity to obtain longer contiguous passages than out-
of-domain sentences, and therefore benefit more from the new 
algorithms.  

 
Mean opinion score on 1 to 7 scale 

System 
Out-of-Domain In-Domain 

Baseline System 3.40 3.81 
Current System 3.71 4.92 
Natural Speech 5.94 6.24 

Improvement 12% 46% 

Table 2: Listening test results 

4. Expressive Speech Synthesis 

We are currently exploring two complementary approaches 
to add expressiveness to concatenative synthesis.  The corpus-
driven approach is to collect corpora for each desired 
expressive style, and train synthesis models, e.g. for f0 and 
duration prediction, separately for each corpus [6], [7]. Then 
these models may be switched in as required. This approach 
has the advantage of not relying on any linguistic framework 
to categorize prosodic events.  Further, it provides speech for 
each expressive style, which may yield more natural synthesis 
with less processing than speech drawn from another 
expressive style would. 



However, this approach also poses significant obstacles. 
Multiplying corpus-collection costs by a number of styles 
greatly increases development costs, and this approach does 
not readily lend itself to overlapping styles, e.g. apologetic 
questioning. So we also pursue a prosodic-phonology 
approach, in which we statistically model acoustic parameters 
such as f0 and phone duration on a single, large corpus, in 
terms of a set of prosodic labels taken from a prosodic 
phonology, such as ToBI, as well as in terms of other features 
such as phonetic context. Then we implement expressive 
styles as a type of dictionary, relating styles to sequences of 
these prosodic labels using rules learned from a small corpus.  
While this method addresses the problems of the corpus-
driven approach, it introduces its own obstacles, namely, the 
well-known difficulties in optimizing manually-determined 
rules, the substantial task of prosodically labeling a corpus, 
and the relative immaturity of prosodic phonology. 

These approaches are not mutually exclusive; we envision 
that using style-specific f0 and duration models which 
incorporate prosodic-phonology features could outperform 
either approach alone. 

Some expressive styles seem more amenable to the corpus-
driven approach than the prosodic-phonology approach, and 
vice versa. For example, “conveying good news'' might be 
better realized by a corpus-driven approach, due to its 
complex, systemic effect on the speech signal, while 
“emphasis'' seems more amenable to the prosodic-phonology 
approach because of its simpler, localized manifestation. 
Accordingly, the corpus-driven approach is pursued here to 
synthesize good news, bad news, and questions, while we use 
prosodic phonology for contrastive emphasis. 
 

4.1 Corpus-Driven Expressive Synthesis 

As mentioned in Section 3, corpora in three expressive 
styles, conveying good news, conveying bad news, and asking 
a question, are recorded from the same speaker that recorded 
the general corpus. From the expressive corpora, we build 
separate f0 and duration models for each expressive style, 
using the same statistical approach used to build the general f0 
and duration models mentioned in Section 3. We use the 
attribute-cost matrix described in Section 3 to penalize using 
segments labeled with certain expressive styles when other 
expressive styles are requested. We manually tune the values 
in this cost matrix. 

In order to synthesize a given style, we use the prosodic 
models built from the database in the given expressive style. 
In addition to building prosody models from each style, we 
include the small set of segments from each of the styles in 
the search, motivated by the fact that prosody alone does not 
fully convey the desired style [6].  All segments from all 
styles are considered in the search, weighted by their attribute 
costs.  Should we increase the size of the expressive 
databases, we would expect the cost of substituting one style 
for another would need to be increased. However, in the 
current system, the expressive databases are small, and the 
quality of the synthesis is improved by allowing neutral 
segments, as well as segments from other styles, in the search.  
In doing so, we trade-off the degree to which the desired style 
is conveyed by the spectral qualities of the segments chosen 
to comprise the synthetic utterance against the smoothness 
and overall quality of the synthesis. 

We performed three separate listening tests to measure our 
ability to generate good news, bad news, and yes-no questions 
respectively using this corpus-driven approach.  Each test was 
presented to 16 male and 16 female native speakers of North 
American English. Each listener heard a pair of audio files for 

each sentence; one member of the pair was the sentence 
spoken in the default/neutral style, and the other member of 
the pair was the sentence spoken in the expressive style being 
tested. The order of the members was randomized across 
sentences.  Each sentence was text that could be appropriately 
spoken in the expressive style being tested, i.e. sentences such 
as "you have the winning number" went into the "good news" 
test, while sentences such as "I dented your new car" went 
into the "bad news" test.    

For each pair of sentences, each listener was asked which 
one sounded more like it was spoken with the desired style. 
For example, for the yes-no questions, each listener was asked 
which of the stimuli, the question generated from the default 
system or from the system expressing questions, sounded 
more like a question. 

Shown in Table 3 are the results of the tests.  In the right-
hand column is the percentage of responses for which the 
expressive stimulus was identified as sounding more like the 
desired style than did the baseline, neutral stimulus. 
 

style Percent correct 
Bad news 70.2 
Good news 80.3 
Yes-no questions 84.6 

Table 3: Corpus-driven listening test results 

4.2 Prosodic-Phonology Expressive Synthesis 

This approach is based on the theory that prosody is 
encoded as linguistic units which link elements of meaning to 
signal acoustics in a way analogous to how a segmental 
phonology links meaning to acoustics. For example, 
pluralness is typically modeled not by a direct acoustic 
modeling, but rather through rules which place /s/ or /z/ 
segments at the end of many words and have exceptions for 
anomalous pairs like “ox”/“oxen”. Similarly, we seek to 
correlate styles such as “contrastive emphasis” with patterns 
of linguistic units of prosody, and then develop statistical 
acoustic-prosodic models which in turn relate those units to 
signal parameters, much as statistical acoustic-phonetic 
models represent the acoustics of e.g. /s/ independent of 
whether the /s/ represents pluralness. In this framework, 
addition of a new style merely requires additions to the rules 
relating styles to prosodic labels, not collection of a new 
speech corpus. This is analogous to the addition of new words 
merely requiring new dictionary entries rather than new 
recordings of specific words.  

We choose American English Tones and Break Indices 
(AmE-ToBI) [8], [9] as the prosodic inventory, as it appears 
to represent a reasonable consensus of researchers in English 
prosody, and it exhibits reasonable consistency among 
transcribers [10], [11]. AmE-ToBI analyzes intonation in 
terms of a hierarchy of intonational phrases with edge tones 
such as L%, H%, L- and H-, and pitch accents such as H*, 
L*, and L*+H. AmE-ToBI also represents the degree of 
disjuncture between adjacent words with labels like 4 for a 
full intonational phrase break, and 1 for most phrase-internal 
word boundaries. 

For our experiments, about 1/3 of the corpus was hand-
labeled using AmE-ToBI.   The corpus was used to train the f0 
and duration models, with a “missing'' value used for AmE-
ToBI features in the unlabeled data. AmE-ToBI features for 
the given syllable and four neighboring syllables are included 
when developing the f0 and duration prediction models. We 
model the AmE-ToBI parameter HiF0 by training the models 
to predict f0 / HiF0, and then we multiply the predicted value 



at run-time by a HiF0 determined by rule, thereby improving 
modeling compared to our previous study [12]. 

To determine the patterns relating styles to AmE-ToBI 
patterns, we collected a very small corpus consisting of a few 
declarative sentences spoken by 20 professional speakers. We 
analyzed this corpus, finding that a contrastively-emphasized 
word consistently has at least intermediate prosodic phrase 
boundaries on each side of the word, accompanied by break 
indices of at least 3.  The word is marked with pitch accent 
H* and phrase accent L-.  Finally, the pitch range of this one-
word intermediate phrase is conspicuously high; the high 
pitch in the phrase, marked by HiF0, averages 28 percentile 
points higher in the speaker's pitch range than the 
intermediate phrase containing the word produced neutrally.  
We put rules in our system accordingly. 

We generated 48 questions/answer pairs, differing in one 
word by which the answer addresses the question. We then 
synthesized two versions of the answer, one in which that 
word is (appropriately) marked for contrastive emphasis, and 
another in which another word is instead (inappropriately) 
marked for contrastive emphasis.  An example is:  

 
Q: Mice have thirty-two muscles in each ear? 
A1: CATS have thirty-two muscles in each ear. 
A2: Cats have THIRTY-two muscles in each ear. 
 
Listeners read the question, then heard the two answers and 

were asked which was spoken more appropriately. In this 
case, "cats" is the word which should be emphasized, and so 
the answer indicating perception of the appropriate 
contrastive emphasis would be answer 1.  Sentence order 
within stimulus, and stimulus order, were balanced across 32 
listeners, who each heard the 48 stimuli in a single session 
after three practice stimuli.  Overall, listeners identified the 
correctly-contrastively-emphasized sentence 82.6% of the 
time.  

5. Conclusion 

We introduce expressiveness to our concatenative synthesis 
system through a variety of techniques each of which can be 
invoked under suitable circumstances. We also introduce 
several algorithms which improve the general quality of our 
concatenative synthesis. When the corpus bears some 
resemblance to the text to be synthesized, we bias the segment 
search to favor selecting long contiguous chunks, and then we 
suppress signal processing within those chunks, preserving 
the speaker's natural expressiveness and making a substantial 
improvement in perceived quality.  When possible to collect a 
corpus in a desired expressive style, synthesizing even 
unrelated material in the same style benefits from f0 and 
duration models trained on such a corpus.  When there is no 
concatenative corpus associated with an expressive style or a 
specific type of content, we can employ a prosodic-phonology 
approach to provide expressive synthesis using the general 
corpus.  In the future, we intend to pursue refinements and 
combinations of these techniques to realize further 
improvements in expressive speech synthesis. 
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