EE E6820: Speech \& Audio Processing \& Recognition

Lecture 10: Signal Separation

Dan Ellis dpwe@ee.columbia.edu
Michael Mandel mim@ee.columbia.edu
Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

April 14, 2009
(1) Sound mixture organization
(2) Computational auditory scene analysis
(3) Independent component analysis
(4) Model-based separation

Outline

(1) Sound mixture organization
(2) Computational auditory scene analysis

3 Independent component analysis

44 Model-based separation

Sound Mixture Organization

- Auditory Scene Analysis: describing a complex sound in terms of high-level sources / events
... like listeners do
- Hearing is ecologically grounded
- reflects 'natural scene' properties
- subjective, not absolute

Sound, mixtures, and learning

- Sound
- carries useful information about the world
- complements vision
- Mixtures
... are the rule, not the exception
- medium is 'transparent', sources are many
- must be handled!
- Learning
- the 'speech recognition' lesson: let the data do the work
- like listeners

The problem with recognizing mixtures

"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman, 1990)

- Received waveform is a mixture
- two sensors, N signals ... underconstrained
- Disentangling mixtures as the primary goal?
- perfect solution is not possible
- need experience-based constraints

Approaches to sound mixture recognition

- Separate signals, then recognize
e.g. Computational Auditory Scene Analysis (CASA), Independent Component Analysis (ICA)
- nice, if you can do it
- Recognize combined signal
- 'multicondition training'
- combinatorics...
- Recognize with parallel models
- full joint-state space?
- divide signal into fragments, then use missing-data recognition

What is the goal of sound mixture analysis?

- Separate signals?
- output is unmixed waveforms
- underconstrained, very hard...
- too hard? not required?
- Source classification?
- output is set of event-names
- listeners do more than this...
- Something in-between? Identify independent sources + characteristics
- standard task, results?

Segregation vs. Inference

- Source separation requires attribute separation
- sources are characterized by attributes (pitch, loudness, timbre, and finer details)
- need to identify and gather different attributes for different sources. . .
- Need representation that segregates attributes
- spectral decomposition
- periodicity decomposition
- Sometimes values can't be separated
e.g. unvoiced speech
- maybe infer factors from probabilistic model?

$$
p(O, x, y) \rightarrow p(x, y \mid O)
$$

- or: just skip those values \& infer from higher-level context

Outline

(1) Sound mixture organization

(2) Computational auditory scene analysis
(3) Independent component analysis

44 Model-based separation

Auditory Scene Analysis (Bregman, 1990)

- How do people analyze sound mixtures?
- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes
- Grouping 'rules' (Darwin and Carlyon, 1995)
- cues: common onset/offset/modulation, harmonicity, spatial location, ...

Cues to simultaneous grouping

- Elements + attributes

- Common onset
- simultaneous energy has common source
- Periodicity
- energy in different bands with same cycle
- Other cues
- spatial (ITD/IID), familiarity, ...

The effect of context

- Context can create an 'expectation'
i.e. a bias towards a particular interpretation
- e.g. Bregman's "old-plus-new" principle:
- A change in a signal will be interpreted as an added source whenever possible

- a different division of the same energy depending on what preceded it

Computational Auditory Scene Analysis (CASA)

- Goal: Automatic sound organization
- Systems to 'pick out' sounds in a mixture
... like people do
e.g. voice against a noisy background
- to improve speech recognition
- Approach
- psychoacoustics describes grouping 'rules'
... just implement them?

CASA front-end processing

- Correlogram: Loosely based on known/possible physiology

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

Bottom-Up Approach (Brown and Cooke, 1994)

- Implement psychoacoustic theory

- left-to-right processing
- uses common onset \& periodicity cues
- Able to extract voiced speech

Problems with 'bottom-up' CASA

- Circumscribing time-frequency elements
- need to have 'regions', but hard to find
- Periodicity is the primary cue
- how to handle aperiodic energy?
- Resynthesis via masked filtering
- cannot separate within a single t-f element
- Bottom-up leaves no ambiguity or context
- how to model illusions?

Restoration in sound perception

- Auditory 'illusions' = hearing what's not there
- The continuity illusion \& Sinewave Speech (SWS)

- duplex perception
- What kind of model accounts for this?
- is it an important part of hearing?

Adding top-down constraints: Prediction-Driven CASA

- Perception is not direct
but a search for plausible hypotheses -
- Data-driven (bottom-up)...

- objects irresistibly appear
- vs. Prediction-driven (top-down)

- match observations with a 'world-model'
- need world-model constraints...

Generic sound elements for PDCASA (Ellis, 1996)

- Goal is a representational space that
- covers real-world perceptual sounds
- minimal parameterization (sparseness)
- separate attributes in separate parameters

- Object hierarchies built on top...

PDCASA for old-plus-new

- Incremental analysis

PDCASA for the continuity illusion

- Subjects hear the tone as continuous
... if the noise is a plausible masker

- Data-driven analysis gives just visible portions:

- Prediction-driven can infer masking:

Prediction-Driven CASA

- Explain a complex sound with basic elements

Aside: Ground Truth

- What do people hear in sound mixtures?
- do interpretations match?
\rightarrow Listening tests to collect 'perceived events':

Aside: Evaluation

- Evaluation is a big problem for CASA
- what is the goal, really?
- what is a good test domain?
- how do you measure performance?
- SNR improvement
- tricky to derive from before/after signals: correspondence problem
- can do with fixed filtering mask
- differentiate removing signal from adding noise
- Speech Recognition (ASR) improvement
- recognizers often sensitive to artifacts
- 'Real' task?
- mixture corpus with specific sound events...

Outline

(1) Sound mixture organization

(2) Computational auditory scene analysis
(3) Independent component analysis

4 Model-based separation

Independent Component Analysis (ICA)

(Bell and Sejnowski, 1995, etc.)

- If mixing is like matrix multiplication, then separation is searching for the inverse matrix

i.e. $W \approx A^{-1}$
- with N different versions of the mixed signals (microphones), we can find N different input contributions (sources)
- how to rate quality of outputs?
i.e. when do outputs look separate?

Gaussianity, Kurtosis, \& Independence

- A signal can be characterized by its PDF $p(x)$
i.e. as if successive time values are drawn from a random variable (RV)
- Gaussian PDF is 'least interesting'
- Sums of independent RVs (PDFs convolved) tend to Gaussian PDF (central limit theorem)
- Measures of deviations from Gaussianity: 4th moment is Kurtosis ("bulging")

$$
\operatorname{kurt}(y)=\mathrm{E}\left[\left(\frac{y-\mu}{\sigma}\right)^{4}\right]-3
$$

- kurtosis of Gaussian is zero (this def.)
- 'heavy tails' \rightarrow kurt >0
- closer to uniform dist. \rightarrow kurt <0
- Directly related to KL divergence from Gaussian PDF

Independence in Mixtures

- Scatter plots \& Kurtosis values

Finding Independent Components

- Sums of independent RVs are more Gaussian
\rightarrow minimize Gaussianity to undo sums
i.e. search over $w_{i j}$ terms in inverse matrix

- Solve by Gradient descent or Newton-Raphson:

$$
\begin{aligned}
w^{+} & =\mathrm{E}\left[x g\left(w^{\top} x\right)\right]-\mathrm{E}\left[g^{\prime}\left(w^{\top} x\right)\right] w \\
w & =\frac{w^{+}}{\left\|w^{+}\right\|}
\end{aligned}
$$

- "Fast ICA", (Hyvärinen and Oja, 2000) http://www.cis.hut.fi/projects/ica/fastica/

Limitations of ICA

- Assumes instantaneous mixing
- real world mixtures have delays \& reflections
- STFT domain?

$$
\begin{aligned}
x_{1}(t) & =a_{11}(t) * s_{1}(t)+a_{12}(t) * s_{2}(t) \\
\Rightarrow X_{1}(\omega) & =A_{11}(\omega) S_{1}(\omega)+A_{12}(\omega) S_{2}(\omega)
\end{aligned}
$$

- Solve ω subbands separately, match up answers
- Searching for best possible inverse matrix
- cannot find more than N outputs from N inputs
- but: "projection pursuit" ideas + time-frequency masking...
- Cancellation inherently fragile
- $\hat{s}_{1}=w_{11} x_{1}+w_{12} x_{2}$ to cancel out s_{2}
- sensitive to noise in x channels
- time-varying mixtures are a problem

Outline

(1) Sound mixture organization

(2) Computational auditory scene analysis
(3) Independent component analysis

4 Model-based separation

Model-Based Separation: HMM decomposition

- (e.g. Varga and Moore, 1990; Gales and Young, 1993)
- Independent state sequences for $2+$ component source models
model 2

- New combined state space $q^{\prime}=q 1 \times q 2$
- need pdfs for combinations $p\left(X \mid q_{1}, q_{2}\right)$

One-channel Separation: Masked Filtering

- Multichannel \rightarrow ICA: Inverse filter and cancel

- One channel: find a time-frequency mask

- Cannot remove overlapping noise in t-f cells, but surprisingly effective (psych masking?):

Mask
resynth

"One microphone source separation"

- (Roweis, 2001)
- State sequences \rightarrow t-f estimates \rightarrow mask

- 1000 states/model ($\rightarrow 10^{6}$ transition probs.)
- simplify by subbands (coupled HMM)?

Speech Fragment Recognition

- (Barker et al., 2005)
- Signal separation is too hard! Instead:
- segregate features into partially-observed sources
- then classify
- Made possible by missing data recognition
- integrate over uncertainty in observations for true posterior distribution
- Goal: Relate clean speech models $P(X \mid M)$ to speech-plus-noise mixture observations
... and make it tractable

Missing Data Recognition

- Speech models $p(x \mid m)$ are multidimensional...
i.e. means, variances for every freq. channel
- need values for all dimensions to get $p(\cdot)$
- But: can evaluate over a subset of dimensions x_{k}

$$
p\left(x_{k} \mid m\right)=\int p\left(x_{k}, x_{u} \mid m\right) d x_{u}
$$

- Hence, missing data recognition:

- hard part is finding the mask (segregation)

Missing Data Results

- Estimate static background noise level $N(f)$
- Cells with energy close to background are considered "missing"

- must use spectral features!
- But: nonstationary noise \rightarrow spurious mask bits
- can we try removing parts of mask?

Comparing different segregations

- Standard classification chooses between models M to match source features X

$$
M^{*}=\underset{M}{\operatorname{argmax}} p(M \mid X)=\underset{M}{\operatorname{argmax}} p(X \mid M) p(M)
$$

- Mixtures: observed features Y, segregation S, all related by $p(X \mid Y, S)$

- Joint classification of model and segregation:

$$
p(M, S \mid Y)=p(M) \int p(X \mid M) \frac{p(X \mid Y, S)}{p(X)} d X p(S \mid Y)
$$

- $P(X)$ no longer constant

Calculating fragment matches

$$
p(M, S \mid Y)=p(M) \int p(X \mid M) \frac{p(X \mid Y, S)}{p(X)} d X p(S \mid Y)
$$

- $p(X \mid M)$ - the clean-signal feature model
- $\frac{p(X \mid Y, S)}{p(X)}$ - is X 'visible' given segregation?
- Integration collapses some bands...
- $p(S \mid Y)$ - segregation inferred from observation
- just assume uniform, find S for most likely M
- or: use extra information in Y to distinguish Ss...
- Result:
- probabilistically-correct relation between
- clean-source models $p(X \mid M)$ and
- inferred, recognized source + segregation $p(M, S \mid Y)$

Using CASA features

- $p(S \mid Y)$ links acoustic information to segregation
- is this segregation worth considering?
- how likely is it?
- Opportunity for CASA-style information to contribute
- periodicity/harmonicity: these different frequency bands belong together
- onset/continuity: this time-frequency region must be whole

Fragment decoding

- Limiting S to whole fragments makes hypothesis search tractable:

- choice of fragments reflects $p(S \mid Y) p(X \mid M)$
i.e. best combination of segregation and match to speech models
- Merging hypotheses limits space demands
... but erases specific history

Speech fragment decoder results

- Simple $p(S \mid Y)$ model forces contiguous regions to stay together
- big efficiency gain when searching S space

- Clean-models-based recognition rivals trained-in-noise recognition

Multi-source decoding

- Search for more than one source

- Mutually-dependent data masks
- disjoint subsets of cells for each source
- each model match $p\left(M_{x} \mid S_{x}, Y\right)$ is independent
- masks are mutually dependent: $p\left(S_{1}, S_{2} \mid Y\right)$
- Huge practical advantage over full search

Summary

- Auditory Scene Analysis:
- Hearing: partially understood, very successful
- Independent Component Analysis:
- Simple and powerful, some practical limits
- Model-based separation:
- Real-world constraints, implementation tricks

Parting thought
 Mixture separation the main obstacle in many applications e.g. soundtrack recognition

References

Albert S. Bregman. Auditory Scene Analysis: The Perceptual Organization of Sound. The MIT Press, 1990. ISBN 0262521954.
C.J. Darwin and R.P. Carlyon. Auditory grouping. In B.C.J. Moore, editor, The Handbook of Perception and Cognition, Vol 6, Hearing, pages 387-424. Academic Press, 1995.
G. J. Brown and M. P. Cooke. Computational auditory scene analysis. Computer speech and language, 8:297-336, 1994.
D. P. W. Ellis. Prediction-driven computational auditory scene analysis. PhD thesis, Department of Electrtical Engineering and Computer Science, M.I.T., 1996.
Anthony J. Bell and Terrence J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6):1129-1159, 1995. ftp://ftp.cnl.salk.edu/pub/tony/bell.blind.ps.Z.
A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5):411-430, 2000. http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/.
A. Varga and R. Moore. Hidden markov model decomposition of speech and noise. In Proceedings of the 1990 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 845-848, 1990.
M.J.F. Gales and S.J. Young. Hmm recognition in noise using parallel model combination. In Proc. Eurospeech-93, volume 2, pages 837-840, 1993.
S. Roweis. One-microphone source separation. In NIPS, volume 11, pages 609-616. MIT Press, Cambridge MA, 2001.
Jon Barker, Martin Cooke, and Daniel P. W. Ellis. Decoding speech in the presence of other sources. Speech Communication, 45(1):5-25, 2005. URL http://www.ee.columbia.edu/~dpwe/pubs/BarkCE05-sfd.pdf.

