EE E6820: Speech \& Audio Processing \& Recognition

Lecture 9: Speech Recognition

Dan Ellis dpwe@ee.columbia.edu
Michael Mandel mim@ee.columbia.edu

Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

$$
\text { April 7, } 2009
$$

(1) Recognizing speech
(2) Feature calculation
(3) Sequence recognition

4 Large vocabulary, continuous speech recognition (LVCSR)

Outline

(1) Recognizing speech
(2) Feature calculation
(3) Sequence recognition

4 Large vocabulary, continuous speech recognition (LVCSR)

Recognizing speech

- What kind of information might we want from the speech signal?
- words
- phrasing, 'speech acts' (prosody)
- mood / emotion
- speaker identity
- What kind of processing do we need to get at that information?
- time scale of feature extraction
- signal aspects to capture in features
- signal aspects to exclude from features

Speech recognition as Transcription

- Transcription $=$ "speech to text"
- find a word string to match the utterance
- Gives neat objective measure: word error rate (WER) \%
- can be a sensitive measure of performance

- Three kinds of errors:

$$
W E R=(S+D+I) / N
$$

Problems: Within-speaker variability

- Timing variation
- word duration varies enormously

- fast speech 'reduces' vowels
- Speaking style variation
- careful/casual articulation
- soft/loud speech
- Contextual effects
- speech sounds vary with context, role:
"How do you do?"

Problems: Between-speaker variability

- Accent variation
- regional / mother tongue
- Voice quality variation
- gender, age, huskiness, nasality
- Individual characteristics
- mannerisms, speed, prosody

Problems: Environment variability

- Background noise
- fans, cars, doors, papers
- Reverberation
- 'boxiness' in recordings
- Microphone/channel
- huge effect on relative spectral gain

How to recognize speech?

- Cross correlate templates?
- waveform?
- spectrogram?
- time-warp problems
- Match short-segments \& handle time-warp later
- model with slices of $\sim 10 \mathrm{~ms}$
- pseudo-stationary model of words:

- other sources of variation...

Probabilistic formulation

- Probability that segment label is correct
- gives standard form of speech recognizers
- Feature calculation: $s[n] \rightarrow X_{m} \quad\left(m=\frac{n}{H}\right)$
- transforms signal into easily-classified domain
- Acoustic classifier: $p\left(q^{i} \mid X\right)$
- calculates probabilities of each mutually-exclusive state q^{i}
- 'Finite state acceptor' (i.e. HMM)

$$
Q^{*}=\underset{\left\{q_{0}, q_{1}, \ldots q_{L}\right\}}{\operatorname{argmax}} p\left(q_{0}, q_{1}, \ldots q_{L} \mid X_{0}, X_{1}, \ldots X_{L}\right)
$$

- MAP match of allowable sequence to probabilities:

Standard speech recognizer structure

- Fundamental equation of speech recognition:

$$
\begin{aligned}
Q^{*} & =\underset{Q}{\operatorname{argmax}} p(Q \mid X, \Theta) \\
& =\underset{Q}{\operatorname{argmax}} p(X \mid Q, \Theta) p(Q \mid \Theta)
\end{aligned}
$$

- $X=$ acoustic features
- $p(X \mid Q, \Theta)=$ acoustic model
- $p(Q \mid \Theta)=$ language model
- $\operatorname{argmax}_{Q}=$ search over sequences
- Questions:
- what are the best features?
- how do we do model them?
- how do we find/match the state sequence?

Outline

(1) Recognizing speech
(2) Feature calculation

3 Sequence recognition

4 Large vocabulary, continuous speech recognition (LVCSR)

Feature Calculation

- Goal: Find a representational space most suitable for classification
- waveform: voluminous, redundant, variable
- spectrogram: better, still quite variable
- ...?
- Pattern Recognition:
representation is upper bound on performance
- maybe we should use the waveform...
- or, maybe the representation can do all the work
- Feature calculation is intimately bound to classifier
- pragmatic strengths and weaknesses
- Features develop by slow evolution
- current choices more historical than principled

Features (1): Spectrogram

- Plain STFT as features e.g.

$$
X_{m}[k]=S[m H, k]=\sum_{n} s[n+m H] w[n] e^{-j 2 \pi k n / N}
$$

- Consider examples:

- Similarities between corresponding segments
- but still large differences

Features (2): Cepstrum

- Idea: Decorrelate, summarize spectral slices:

$$
X_{m}[\ell]=\operatorname{IDFT}\{\log |S[m H, k]|\}
$$

- good for Gaussian models
- greatly reduce feature dimension

Features (3): Frequency axis warp

- Linear frequency axis gives equal 'space' to $0-1 \mathrm{kHz}$ and $3-4 \mathrm{kHz}$
- but perceptual importance very different
- Warp frequency axis closer to perceptual axis
- mel, Bark, constant-Q ...

$$
X[c]=\sum_{k=\ell_{c}}^{u_{c}}|S[k]|^{2}
$$

Features (4): Spectral smoothing

- Generalizing across different speakers is helped by smoothing (i.e. blurring) spectrum
- Truncated cepstrum is one way:
- MMSE approx to $\log |S[k]|$
- LPC modeling is a little different:
- MMSE approx to $|S[k]| \rightarrow$ prefers detail at peaks

Features (5): Normalization along time

- Idea: feature variations, not absolute level
- Hence: calculate average level and subtract it:

$$
\hat{Y}[n, k]=\hat{X}[n, k]-\operatorname{mean}_{n}\{\hat{X}[n, k]\}
$$

- Factors out fixed channel frequency response

$$
\begin{aligned}
x[n] & =h_{c} * s[n] \\
\hat{X}[n, k]=\log |X[n, k]| & =\log \left|H_{c}[k]\right|+\log |S[n, k]|
\end{aligned}
$$

Delta features

- Want each segment to have 'static' feature vals
- but some segments intrinsically dynamic!
\rightarrow calculate their derivatives-maybe steadier?
- Append $d X / d t\left(+d^{2} X / d t^{2}\right)$ to feature vectors

- Relates to onset sensitivity in humans?

Overall feature calculation

MFCCs and/or RASTA-PLP

Features summary

- Normalize same phones
- Contrast different phones

Outline

(1) Recognizing speech

(2) Feature calculation

(3) Sequence recognition

4 Large vocabulary, continuous speech recognition (LVCSR)

Sequence recognition: Dynamic Time Warp (DTW)

- Framewise comparison with stored templates:

- distance metric?
- comparison across templates?

Dynamic Time Warp (2)

- Find lowest-cost constrained path:
- matrix $d(i, j)$ of distances between input frame f_{i} and reference frame r_{j}
- allowable predecessors and transition costs $T_{x y}$

- Best path via traceback from final state
- store predecessors for each (i, j)

DTW-based recognition

- Reference templates for each possible word
- For isolated words:
- mark endpoints of input word
- calculate scores through each template (+prune)

- continuous speech: link together word ends
- Successfully handles timing variation
- recognize speech at reasonable cost

Statistical sequence recognition

- DTW limited because it's hard to optimize
- learning from multiple observations
- interpretation of distance, transition costs?
- Need a theoretical foundation: Probability
- Formulate recognition as MAP choice among word sequences:

$$
Q^{*}=\underset{Q}{\operatorname{argmax}} p(Q \mid X, \Theta)
$$

- $X=$ observed features
- $Q=$ word-sequences
- $\Theta=$ all current parameters

State-based modeling

- Assume discrete-state model for the speech:
- observations are divided up into time frames
- model \rightarrow states \rightarrow observations:

- Probability of observations given model is:

$$
p(X \mid \Theta)=\sum_{\text {all } Q} p\left(X_{1}^{N} \mid Q, \Theta\right) p(Q \mid \Theta)
$$

- sum over all possible state sequences Q
- How do observations X_{1}^{N} depend on states Q ?
- How do state sequences Q depend on model Θ ?

HMM review

HMM is specified by parameters Θ :

- states q^{i}
- transition probabilities $a_{i j}$

		\% 0				
k		90	. 1	0.0	00	
		00	. 9	0.1		
		0	. 0			

- emission distributions $b_{i}(x)$

(+ initial state probabilities π_{i})

$$
a_{i j} \equiv p\left(q_{n}^{j} \mid q_{n-1}^{i}\right) \quad b_{i}(x) \equiv p\left(x \mid q_{i}\right) \quad \pi_{i} \equiv p\left(q_{1}^{i}\right)
$$

HMM summary (1)

- HMMs are a generative model: recognition is inference of $p(Q \mid X)$
- During generation, behavior of model depends only on current state q_{n} :
- transition probabilities $p\left(q_{n+1} \mid q_{n}\right)=a_{i j}$
- observation distributions $p\left(x_{n} \mid q_{n}\right)=b_{i}(x)$
- Given states $Q=\left\{q_{1}, q_{2}, \ldots, q_{N}\right\}$ and observations $X=X_{1}^{N}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
- Markov assumption makes

$$
p(X, Q \mid \Theta)=\prod_{n} p\left(x_{n} \mid q_{n}\right) p\left(q_{n} \mid q_{n-1}\right)
$$

HMM summary (2)

- Calculate $p(X \mid \Theta)$ via forward recursion:

$$
p\left(X_{1}^{n}, q_{n}^{j}\right)=\alpha_{n}(j)=\left[\sum_{i=1}^{S} \alpha_{n-1}(i) a_{i j}\right] b_{j}\left(x_{n}\right)
$$

- Viterbi (best path) approximation

$$
\alpha_{n}^{*}(j)=\left[\max _{i}\left\{\alpha_{n-1}^{*}(i) a_{i j}\right\}\right] b_{j}\left(x_{n}\right)
$$

- then backtrace...

$$
Q^{*}=\underset{Q}{\operatorname{argmax}}(X, Q \mid \Theta)
$$

- Pictorially:

assumed, hidden

Outline

(1) Recognizing speech
 (2) Feature calculation
 (3) Sequence recognition

4. Large vocabulary, continuous speech recognition (LVCSR)

Recognition with HMMs

- Isolated word
- choose best $p(M \mid X) \propto p(X \mid M) p(M)$

- Continuous speech
- Viterbi decoding of one large HMM gives words

Training HMMs

- Probabilistic foundation allows us to train HMMs to 'fit' training data
i.e. estimate $a_{i j}, b_{i}(x)$ given data
- better than DTW...
- Algorithms to improve $p(\Theta \mid X)$ are key to success of HMMs
- maximum-likelihood of models...
- State alignments Q for training examples are generally unknown
- ... else estimating parameters would be easy
- Viterbi training
- 'Forced alignment'
- choose 'best' labels (heuristic)
- EM training
- 'fuzzy labels' (guaranteed local convergence)

Overall training procedure

Language models

- Recall, fundamental equation of speech recognition

$$
\begin{aligned}
Q^{*} & =\underset{Q}{\operatorname{argmax}} p(Q \mid X, \Theta) \\
& =\underset{Q}{\operatorname{argmax}} p\left(X \mid Q, \Theta_{A}\right) p\left(Q \mid \Theta_{L}\right)
\end{aligned}
$$

- So far, looked at $p\left(X \mid Q, \Theta_{A}\right)$
- What about $p\left(Q \mid \Theta_{L}\right)$?
- Q is a particular word sequence
- Θ_{L} are parameters related to the language
- Two components:
- link state sequences to words $p\left(Q \mid w_{i}\right)$
- priors on word sequences $p\left(w_{i} \mid M_{j}\right)$

HMM Hierarchy

- HMMs support composition
- can handle time dilation, pronunciation, grammar all within the same framework

$$
\begin{aligned}
p(q \mid M)= & p(q, \phi, w \mid M) \\
= & p(q \mid \phi) \\
& \cdot p(\phi \mid w) \\
& \cdot p\left(w_{n} \mid w_{1}^{n-1}, M\right)
\end{aligned}
$$

Pronunciation models

- Define states within each word $p\left(Q \mid w_{i}\right)$
- Can have unique states for each word ('whole-word' modeling), or ...
- Sharing (tying) subword units between words to reflect underlying phonology
- more training examples for each unit
- generalizes to unseen words
- (or can do it automatically...)
- Start e.g. from pronunciation dictionary:

ZERO(0.5)	z iy r ow
$\operatorname{ZERO}(0.5)$	z ih r ow
$\operatorname{ONE}(1.0)$	w ah n
TWO(1.0)	tcl t uw

Learning pronunciations

- 'Phone recognizer' transcribes training data as phones
- align to 'canonical' pronunciations

Baseform Phoneme String

Surface Phone String

- infer modification rules
- predict other pronunciation variants
- e.g. 'd deletion':

$$
d \rightarrow \emptyset \mid \ell_{\text {stop }} \quad p=0.9
$$

- Generate pronunciation variants; use forced alignment to find weights

Grammar

- Account for different likelihoods of different words and word sequences $p\left(w_{i} \mid M_{j}\right)$
- 'True’ probabilities are very complex for LVCSR
- need parses, but speech often agrammatic
\rightarrow Use n-grams:

$$
p\left(w_{n} \mid w_{1}^{L}\right)=p\left(w_{n} \mid w_{n-K}, \ldots, w_{n-1}\right)
$$

e.g. n -gram models of Shakespeare:
$\mathrm{n}=1$ To him swallowed confess hear both. Which. Of save on...
$\mathrm{n}=2$ What means, sir. I confess she? then all sorts, he is trim, ...
$\mathrm{n}=3$ Sweet prince, Falstaff shall die. Harry of Monmouth's grave...
$\mathrm{n}=4$ King Henry. What! I will go seek the traitor Gloucester. ...

- Big win in recognizer WER
- raw recognition results often highly ambiguous
- grammar guides to 'reasonable' solutions

Smoothing LVCSR grammars

- n-grams ($n=3$ or 4) are estimated from large text corpora
- 100M+ words
- but: not like spoken language
- 100,000 word vocabulary $\rightarrow 10^{15}$ trigrams!
- never see enough examples
- unobserved trigrams should NOT have $\operatorname{Pr}=0$!
- Backoff to bigrams, unigrams
- $p\left(w_{n}\right)$ as an approx to $p\left(w_{n} \mid w_{n-1}\right)$ etc.
- interpolate 1 -gram, 2 -gram, 3 -gram with learned weights?
- Lots of ideas e.g. category grammars
- p (PLACE |"went", "to" $) p\left(w_{n} \mid\right.$ PLACE $)$
- how to define categories?
- how to tag words in training corpus?

Decoding

- How to find the MAP word sequence?
- States, pronunciations, words define one big HMM
- with 100,000+ individual states for LVCSR!

\rightarrow Exploit hierarchic structure

- phone states independent of word
- next word (semi) independent of word history

Decoder pruning

- Searching 'all possible word sequences'?
- need to restrict search to most promising ones: beam search
- sort by estimates of total probability
$=\operatorname{Pr}(\mathrm{so} \mathrm{far})+$ lower bound estimate of remains
- trade search errors for speed
- Start-synchronous algorithm:
- extract top hypothesis from queue:

$$
\left[P n, \quad\left\{w_{1}, \ldots, w_{k}\right\}, \quad n\right]
$$

pr. so far words next time frame

- find plausible words $\left\{w_{i}\right\}$ starting at time $n \rightarrow$ new hypotheses:

$$
\left[P_{n} p\left(X_{n}^{n+N-1} \mid w^{i}\right) p\left(w^{i} \mid w_{k} \ldots\right), \quad\left\{w_{1}, \ldots, w_{k}, w^{i}\right\}, \quad n+N\right]
$$

- discard if too unlikely, or queue is too long
- else re-insert into queue and repeat

Summary

- Speech signal is highly variable
- need models that absorb variability
- hide what we can with robust features
- Speech is modeled as a sequence of features
- need temporal aspect to recognition
- best time-alignment of templates = DTW
- Hidden Markov models are rigorous solution
- self-loops allow temporal dilation
- exact, efficient likelihood calculations
- Language modeling captures larger structure
- pronunciation, word sequences
- fits directly into HMM state structure
- need to 'prune' search space in decoding

Parting thought

Forward-backward trains to generate, can we train to discriminate?

References

Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.
Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in speech recognition. Computer Speech \& Language, 16(1):69-88, 2002.

Wendy Holmes. Speech Synthesis and Recognition. CRC, December 2001. ISBN 0748408576.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition. Prentice Hall PTR, April 1993. ISBN 0130151572.
Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall, January 2000. ISBN 0130950696.
Frederick Jelinek. Statistical Methods for Speech Recognition (Language, Speech, and Communication). The MIT Press, January 1998. ISBN 0262100665.
Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Processing: A Guide to Theory, Algorithm and System Development. Prentice Hall PTR, April 2001. ISBN 0130226165.

