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Recognizing speech
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“So, I thought about that and I think it’s still possible”

What kind of information might we want from the speech
signal?

I words
I phrasing, ‘speech acts’ (prosody)
I mood / emotion
I speaker identity

What kind of processing do we need to get at that
information?

I time scale of feature extraction
I signal aspects to capture in features
I signal aspects to exclude from features
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Speech recognition as Transcription

Transcription = “speech to text”
I find a word string to match the utterance

Gives neat objective measure: word error rate (WER) %
I can be a sensitive measure of performance

Reference:

Recognized:

THE

–

CAT SAT ON THE MAT

CAT SAT AN THE MATA

Deletion Substitution Insertion

Three kinds of errors:

WER = (S + D + I )/N
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Problems: Within-speaker variability

Timing variation
I word duration varies enormously
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I fast speech ‘reduces’ vowels

Speaking style variation
I careful/casual articulation
I soft/loud speech

Contextual effects
I speech sounds vary with context, role:

“How do you do?”
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Problems: Between-speaker variability

Accent variation
I regional / mother tongue

Voice quality variation
I gender, age, huskiness, nasality

Individual characteristics
I mannerisms, speed, prosody
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Problems: Environment variability

Background noise
I fans, cars, doors, papers

Reverberation
I ‘boxiness’ in recordings

Microphone/channel
I huge effect on relative spectral gain
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How to recognize speech?

Cross correlate templates?
I waveform?
I spectrogram?
I time-warp problems

Match short-segments & handle time-warp later
I model with slices of ∼10 ms
I pseudo-stationary model of words:
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I other sources of variation. . .
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Probabilistic formulation

Probability that segment label is correct
I gives standard form of speech recognizers

Feature calculation: s[n]→ Xm (m = n
H )

I transforms signal into easily-classified domain

Acoustic classifier: p(qi |X )
I calculates probabilities of each mutually-exclusive state qi

‘Finite state acceptor’ (i.e. HMM)

Q∗ = argmax
{q0,q1,...qL}

p(q0, q1, . . . qL |X0,X1, . . .XL)

I MAP match of allowable sequence to probabilities:

X

q0 = “ay”
q1

0 1 2 ...

...

time
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Standard speech recognizer structure

Fundamental equation of speech recognition:

Q∗ = argmax
Q

p(Q |X ,Θ)

= argmax
Q

p(X |Q,Θ)p(Q |Θ)

I X = acoustic features
I p(X |Q,Θ) = acoustic model
I p(Q |Θ) = language model
I argmaxQ = search over sequences

Questions:
I what are the best features?
I how do we do model them?
I how do we find/match the state sequence?
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Feature Calculation

Goal: Find a representational space
most suitable for classification

I waveform: voluminous, redundant, variable
I spectrogram: better, still quite variable
I . . . ?

Pattern Recognition:
representation is upper bound on performance

I maybe we should use the waveform. . .
I or, maybe the representation can do all the work

Feature calculation is intimately bound to classifier
I pragmatic strengths and weaknesses

Features develop by slow evolution
I current choices more historical than principled
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Features (1): Spectrogram

Plain STFT as features e.g.

Xm[k] = S [mH, k] =
∑
n

s[n + mH] w [n] e−j2πkn/N

Consider examples:
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Feature vector slice

Similarities between corresponding segments
I but still large differences
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Features (2): Cepstrum

Idea: Decorrelate, summarize spectral slices:

Xm[`] = IDFT{log |S [mH, k]|}

I good for Gaussian models
I greatly reduce feature dimension
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Features (3): Frequency axis warp

Linear frequency axis gives equal ‘space’
to 0-1 kHz and 3-4 kHz

I but perceptual importance very different

Warp frequency axis closer to perceptual axis
I mel, Bark, constant-Q . . .
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Features (4): Spectral smoothing

Generalizing across different speakers is
helped by smoothing (i.e. blurring) spectrum

Truncated cepstrum is one way:
I MMSE approx to log |S [k]|

LPC modeling is a little different:
I MMSE approx to |S [k]| → prefers detail at peaks
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Features (5): Normalization along time
Idea: feature variations, not absolute level

Hence: calculate average level and subtract it:

Ŷ [n, k] = X̂ [n, k]−mean
n
{X̂ [n, k]}

Factors out fixed channel frequency response

x [n] = hc ∗ s[n]

X̂ [n, k] = log |X [n, k]| = log |Hc [k]|+ log |S [n, k]|

Male

Female

plp

mean
norm

mean
norm

0 0.5 1 1.5 2 2.5 time / s

5

10

15

5

10

15

5

10

15

E6820 (Ellis & Mandel) L9: Speech recognition April 7, 2009 17 / 43



Delta features

Want each segment to have ‘static’ feature vals
I but some segments intrinsically dynamic!
→ calculate their derivatives—maybe steadier?

Append dX/dt (+ d2X/dt2) to feature vectors
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Relates to onset sensitivity in humans?
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Overall feature calculation

MFCCs and/or RASTA-PLP

FFT X[k]

Mel scale
freq. warp

log|X[k]|

IFFT

Truncate

Subtract
mean

CMN MFCC
features

Sound

spectra

audspec

cepstra

FFT X[k]

Bark scale
freq. warp

log|X[k]|

Rasta
band-pass

LPC
smooth

Cepstral
recursion

Rasta-PLP
cepstral features

smoothed
onsets

LPC
spectra

Key attributes:

spectral, auditory scale

decorrelation

smoothed (spectral)
detail

normalization of levels
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Features summary
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Contrast different phones
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Sequence recognition: Dynamic Time Warp (DTW)

Framewise comparison with stored templates:
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I distance metric?
I comparison across templates?
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Dynamic Time Warp (2)

Find lowest-cost constrained path:
I matrix d(i , j) of distances

between input frame fi and reference frame rj
I allowable predecessors and transition costs Txy

Input frames fi
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D(i,j) = d(i,j) + min{          }D(i-1,j) + T10
D(i,j-1) + T01

D(i-1,j-1) + T11D(i-1,j)

D(i-1,j) D(i-1,j)

T10

T
01

T 11 Local match cost

Lowest cost to (i,j)

Best predecessor
(including transition cost)

Best path via traceback from final state
I store predecessors for each (i , j)
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DTW-based recognition

Reference templates for each possible word

For isolated words:
I mark endpoints of input word
I calculate scores through each template (+prune)

R
ef

er
en

ce

Input frames

O
N

E
T

W
O

T
H

R
E

E
F

O
U

R

I continuous speech: link together word ends

Successfully handles timing variation
I recognize speech at reasonable cost
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Statistical sequence recognition

DTW limited because it’s hard to optimize
I learning from multiple observations
I interpretation of distance, transition costs?

Need a theoretical foundation: Probability

Formulate recognition as MAP choice among word sequences:

Q∗ = argmax
Q

p(Q |X ,Θ)

I X = observed features
I Q = word-sequences
I Θ = all current parameters
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State-based modeling

Assume discrete-state model for the speech:
I observations are divided up into time frames
I model → states → observations:

q1Qk : q2 q3 q4 q5 q6 ...

x1X1 : x2 x3 x4 x5 x6 ...

time

states

N
observed feature 

vectors

Model Mj

Probability of observations given model is:

p(X |Θ) =
∑
all Q

p(XN
1 |Q,Θ) p(Q |Θ)

I sum over all possible state sequences Q

How do observations XN
1 depend on states Q?

How do state sequences Q depend on model Θ?
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HMM review

HMM is specified by parameters Θ:

k a t

k a t •

k a t •

••

•

•
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p(x|q)

x

-  states qi

-  transition
   probabilities aij

-  emission 
   distributions bi(x)

(+ initial state probabilities πi )

aij ≡ p(q j
n | qi

n−1) bi (x) ≡ p(x | qi ) πi ≡ p(qi
1)
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HMM summary (1)

HMMs are a generative model: recognition is inference of
p(Q |X )

During generation, behavior of model depends only on current
state qn:

I transition probabilities p(qn+1 | qn) = aij

I observation distributions p(xn | qn) = bi (x)

Given states Q = {q1, q2, . . . , qN}
and observations X = XN

1 = {x1, x2, . . . , xN}
Markov assumption makes

p(X ,Q |Θ) =
∏
n

p(xn | qn)p(qn | qn−1)
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HMM summary (2)

Calculate p(X |Θ) via forward recursion:

p(X n
1 , q

j
n) = αn(j) =

[
S∑

i=1

αn−1(i)aij

]
bj(xn)

Viterbi (best path) approximation

α∗n(j) =

[
max

i

{
α∗n−1(i)aij

}]
bj(xn)

I then backtrace. . .

Q∗ = argmax
Q

(X ,Q |Θ)

Pictorially:

Q = {q1,q2,...qn}

M = M*

Q*
X


assumed, hidden observed inferred
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Recognition with HMMs

Isolated word
I choose best p(M |X ) ∝ p(X |M)p(M)

Model M1
p(X | M1)·p(M1) = ...

Model M2
p(X | M2)·p(M2) = ...

Model M3
p(X | M3)·p(M3) = ...

Input

w ah n

th r iy

t uw

Continuous speech
I Viterbi decoding of one large HMM gives words

Input
p(M1)

p(M2)

p(M3)
sil

w ah n

th r iy

t uw
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Training HMMs

Probabilistic foundation allows us to train HMMs to ‘fit’
training data

i.e. estimate aij , bi (x) given data
I better than DTW. . .

Algorithms to improve p(Θ |X ) are key to success of HMMs
I maximum-likelihood of models. . .

State alignments Q for training examples are generally
unknown

I ... else estimating parameters would be easy

Viterbi training
I ‘Forced alignment’
I choose ‘best’ labels (heuristic)

EM training
I ‘fuzzy labels’ (guaranteed local convergence)
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Overall training procedure

Word modelsLabelled training data
“two one”

“four three”

“five”

Data Models

one

two

three
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th r iy

t uw

f ao

t uw

Fit models to data Repeat
until

convergenceRe-estimate model parameters
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Language models

Recall, fundamental equation of speech recognition

Q∗ = argmax
Q

p(Q |X ,Θ)

= argmax
Q

p(X |Q,ΘA)p(Q |ΘL)

So far, looked at p(X |Q,ΘA)

What about p(Q |ΘL)?
I Q is a particular word sequence
I ΘL are parameters related to the language

Two components:
I link state sequences to words p(Q |wi )
I priors on word sequences p(wi |Mj)
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HMM Hierarchy

HMMs support composition
I can handle time dilation, pronunciation, grammar all within

the same framework

ae1 ae2 ae3

k
ae

aa
t

THE

CAT

DOG
SAT

ATE

p(q |M) = p(q, φ,w |M)

= p(q |φ)

· p(φ |w)

· p(wn |wn−1
1 ,M)
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Pronunciation models

Define states within each word p(Q |wi )

Can have unique states for each word (‘whole-word’
modeling), or . . .

Sharing (tying) subword units between words to reflect
underlying phonology

I more training examples for each unit
I generalizes to unseen words
I (or can do it automatically. . . )

Start e.g. from pronunciation dictionary:

ZERO(0.5) z iy r ow
ZERO(0.5) z ih r ow
ONE(1.0) w ah n
TWO(1.0) tcl t uw
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Learning pronunciations

‘Phone recognizer’ transcribes training data as phones
I align to ‘canonical’ pronunciations

Surface Phone String

f ay v y iy r ow l d

f ah ay v y uh r ow l

Baseform Phoneme String

I infer modification rules
I predict other pronunciation variants

e.g. ‘d deletion’:

d → ∅|`stop p = 0.9

Generate pronunciation variants; use forced alignment to find
weights
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Grammar

Account for different likelihoods of different words and word
sequences p(wi |Mj)

‘True’ probabilities are very complex for LVCSR
I need parses, but speech often agrammatic

→ Use n-grams:

p(wn |wL
1 ) = p(wn |wn−K , . . . ,wn−1)

e.g. n-gram models of Shakespeare:

n=1 To him swallowed confess hear both. Which. Of save on . . .
n=2 What means, sir. I confess she? then all sorts, he is trim, . . .
n=3 Sweet prince, Falstaff shall die. Harry of Monmouth’s grave. . .
n=4 King Henry. What! I will go seek the traitor Gloucester. . . .

Big win in recognizer WER
I raw recognition results often highly ambiguous
I grammar guides to ‘reasonable’ solutions
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Smoothing LVCSR grammars

n-grams (n = 3 or 4) are estimated from large text corpora
I 100M+ words
I but: not like spoken language

100,000 word vocabulary → 1015 trigrams!
I never see enough examples
I unobserved trigrams should NOT have Pr = 0!

Backoff to bigrams, unigrams
I p(wn) as an approx to p(wn |wn−1) etc.
I interpolate 1-gram, 2-gram, 3-gram with learned weights?

Lots of ideas e.g. category grammars
I p(PLACE | “went”, “to”)p(wn |PLACE)
I how to define categories?
I how to tag words in training corpus?
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Decoding

How to find the MAP word sequence?

States, pronunciations, words define one big HMM
I with 100,000+ individual states for LVCSR!

→ Exploit hierarchic structure
I phone states independent of word
I next word (semi) independent of word history
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Decoder pruning

Searching ‘all possible word sequences’?
I need to restrict search to most promising ones: beam search
I sort by estimates of total probability

= Pr(so far)+ lower bound estimate of remains
I trade search errors for speed

Start-synchronous algorithm:
I extract top hypothesis from queue:

[Pn, {w1, . . . ,wk}, n]
pr. so far words next time frame

I find plausible words {wi} starting at time n→ new hypotheses:

[Pnp(X n+N−1
n |w i )p(w i |wk . . .), {w1, . . . ,wk ,w

i}, n + N]

I discard if too unlikely, or queue is too long
I else re-insert into queue and repeat
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Summary

Speech signal is highly variable
I need models that absorb variability
I hide what we can with robust features

Speech is modeled as a sequence of features
I need temporal aspect to recognition
I best time-alignment of templates = DTW

Hidden Markov models are rigorous solution
I self-loops allow temporal dilation
I exact, efficient likelihood calculations

Language modeling captures larger structure
I pronunciation, word sequences
I fits directly into HMM state structure
I need to ‘prune’ search space in decoding

Parting thought

Forward-backward trains to generate, can we train to discriminate?

E6820 (Ellis & Mandel) L9: Speech recognition April 7, 2009 42 / 43



References

Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers
in speech recognition. Computer Speech & Language, 16(1):69–88, 2002.

Wendy Holmes. Speech Synthesis and Recognition. CRC, December 2001. ISBN
0748408576.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.
Prentice Hall PTR, April 1993. ISBN 0130151572.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics and
Speech Recognition. Prentice Hall, January 2000. ISBN 0130950696.

Frederick Jelinek. Statistical Methods for Speech Recognition (Language, Speech, and
Communication). The MIT Press, January 1998. ISBN 0262100665.

Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Processing: A
Guide to Theory, Algorithm and System Development. Prentice Hall PTR, April
2001. ISBN 0130226165.

E6820 (Ellis & Mandel) L9: Speech recognition April 7, 2009 43 / 43


	Recognizing speech
	Feature calculation
	Sequence recognition
	Large vocabulary, continuous speech recognition (LVCSR)
	

