EE E6820: Speech & Audio Processing & Recognition Lecture 8: Spatial sound

Michael Mandel <mim@ee.columbia.edu>

Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

March 27, 2008

- Spatial acoustics
- 2 Binaural perception
- Synthesizing spatial audio
 - Extracting spatial sounds

Outline

Spatial acoustics

- 2 Binaural perception
- Synthesizing spatial audio
- ④ Extracting spatial sounds

Spatial acoustics

- Received sound = source + channel
 - so far, only considered ideal source waveform
- Sound carries information on its spatial origin
 - "ripples in the lake"

- evolutionary significance
- The basis of scene analysis?
 - yes and no—try blocking an ear

Ripples in the lake

- Effect of relative position on sound
 - delay = $\frac{\Delta r}{c}$
 - energy decay $\sim \frac{1}{r^2}$
 - absorption $\sim G(f)^r$
 - direct energy plus reflections
- Give cues for recovering source position
- Describe wavefront by its normal

Recovering spatial information

Source direction as wavefront normal

• moving plane found from timing at 3 points

• need to solve correspondence

Space: need 3 parameters *e.g.* 2 angles and range

The effect of the environment

• Reflection causes additional wavefronts

- + scattering, absorption
- $\blacktriangleright many paths \rightarrow many echoes$
- Reverberant effect
 - causal 'smearing' of signal energy

Reverberation impulse response

- Frequency-dependent
 - greater absorption at high frequencies \rightarrow faster decay
- Size-dependent
 - ▶ larger rooms \rightarrow longer delays \rightarrow slower decay
- Sabine's equation:

$$RT_{60} = \frac{0.049V}{S\bar{\alpha}}$$

• Time constant as size, absorption

Outline

Spatial acoustics

- 2 Binaural perception
- Synthesizing spatial audio
- ④ Extracting spatial sounds

Binaural perception

- What is the information in the 2 ear signals?
 - the sound of the source(s) (L+R)
 - the position of the source(s) (L-R)
- Example waveforms (ShATR database)

Main cues to spatial hearing

- Interaural time difference (ITD)
 - from different path lengths around head
 - dominates in low frequency (< 1.5 kHz)
 - max \sim 750 μ s \rightarrow ambiguous for freqs > 600 Hz
- Interaural intensity difference (IID)
 - from head shadowing of far ear
 - negligible for LF; increases with frequency
- Spectral detail (from pinna reflections) useful for elevation & range
- Direct-to-reverberant useful for range

Claps 33 and 34 from 627M:nf90

Head-Related Transfer Functions (HRTFs)

• Capture source coupling as impulse responses

 $\{\ell_{\theta,\phi,R}(t), r_{\theta,\phi,R}(t)\}$

• Collection: (http://interface.cipic.ucdavis.edu/)

• Highly individual!

Cone of confusion

• Interaural timing cue dominates (below 1kHz)

- from differing path lengths to two ears
- But: only resolves to a cone
 - Up/down? Front/back?

Further cues

• Pinna causes elevation-dependent coloration

- Monaural perception
 - separate coloration from source spectrum?
- Head motion
 - synchronized spectral changes
 - also for ITD (front/back) etc.

Combining multiple cues

Both ITD and ILD influence azimuth; What happens when they disagree?

• "Time-intensity trading"

Binaural position estimation

Imperfect results: (Wenzel et al., 1993)

- \bullet listening to 'wrong' HRTFs \rightarrow errors
- front/back reversals stay on cone of confusion

The Precedence Effect

Reflections give misleading spatial cues

- But: Spatial impression based on 1st wavefront then 'switches off' for \sim 50 ms
 - ... even if 'reflections' are louder
 - leads to impression of room

Binaural Masking Release

Adding noise to reveal target

- Binaural Masking Level Difference up to 12dB
 - greatest for noise in phase, tone anti-phase

Outline

Spatial acoustics

- 2 Binaural perception
- Synthesizing spatial audio
- ④ Extracting spatial sounds

Synthesizing spatial audio

• Goal: recreate realistic soundfield

- hi-fi experience
- synthetic environments (VR)
- Constraints
 - resources
 - information (individual HRTFs)
 - delivery mechanism (headphones)
- Source material types
 - live recordings (actual soundfields)
 - synthetic (studio mixing, virtual environments)

Classic stereo

- 'Intensity panning': no timing modifications, just vary level ±20 dB
 - works as long as listener is equidistant (ILD)
- Surround sound:
 - extra channels in center, sides, ...
 - same basic effect: pan between pairs

Simulating reverberation

- Can characterize reverb by impulse response
 - spatial cues are important: record in stereo
 - \blacktriangleright IRs of ${\sim}1$ sec \rightarrow very long convolution
- Image model: reflections as duplicate sources

• 'Early echos' in room impulse response:

• Actual reflection may be $h_{reflect}(t)$, not $\delta(t)$

Artificial reverberation

- Reproduce perceptually salient aspects
 - early echo pattern (\rightarrow room size impression)
 - ▶ overall decay tail (→ wall materials...)
 - ► interaural coherence (→ spaciousness)
- Nested allpass filters (Gardner, 1992)

Nested+Cascade Allpass

 $H(z) = \frac{z^{-k} - g}{1 - g \cdot z^{-k}}$

Synthetic Reverb

Synthetic binaural audio

- \bullet Source convolved with {L,R} HRTFs gives precise positioning
 - ... for headphone presentation
 - can combine multiple sources (by adding)
- Where to get HRTFs?
 - measured set, but: specific to individual, discrete
 - interpolate by linear crossfade, PCA basis set
 - or: parametric model delay, shadow, pinna (Brown and Duda, 1998)

- Head motion cues?
 - head tracking + fast updates

Transaural sound

- Binaural signals without headphones?
- Can cross-cancel wrap-around signals
 - ▶ speakers $S_{L,R}$, ears $E_{L,R}$, binaural signals $B_{L,R}$
 - Goal: present $B_{L,R}$ to $E_{L,R}$

$$S_L = H_{LL}^{-1}(B_L - H_{RL}S_R)$$
$$S_R = H_{RR}^{-1}(B_R - H_{LR}S_L)$$

- Narrow 'sweet spot'
 - head motion?

Soundfield reconstruction

- Stop thinking about ears
 - just reconstruct pressure + spatial derivatives

- ears in reconstructed field receive same sounds
- Complex reconstruction setup (ambisonics)

able to preserve head motion cues?

Outline

- Spatial acoustics
- 2 Binaural perception
- Synthesizing spatial audio
- 4 Extracting spatial sounds

Extracting spatial sounds

• Given access to soundfield, can we recover separate components?

- ► degrees of freedom: > *N* signals from *N* sensors is hard
- but: people can do it (somewhat)
- Information-theoretic approach
 - use only very general constraints
 - rely on precision measurements
- Anthropic approach
 - examine human perception
 - attempt to use same information

Microphone arrays

- Signals from multiple microphones can be combined to enhance/cancel certain sources
- 'Coincident' mics with different directional gains

• Microphone arrays (endfire)

Adaptive Beamforming & Independent Component Analysis (ICA)

- Formulate mathematical criteria to optimize
- Beamforming: Drive interference to zero
 - cancel energy during nontarget intervals
- ICA: maximize mutual independence of outputs
 - from higher-order moments during overlap

- Limited by separation model parameter space
 - only $N \times N$?

Binaural models

- Human listeners do better?
 - certainly given only 2 channels
- Extract ITD and IID cues?

- cross-correlation finds timing differences
- 'consume' counter-moving pulses
- how to achieve IID, trading
- vertical cues...

Time-frequency masking

- How to separate sounds based on direction?
 - assume one source dominates each time-frequency point
 - assign regions of spectrogram to sources based on probabilistic models
 - re-estimate model parameters based on regions selected
- Model-based EM Source Separation and Localization

- Mandel and Ellis (2007)
- models include IID as $\left|\frac{L_{\omega}}{R_{\omega}}\right|$ and IPD as arg $\frac{L_{\omega}}{R_{\omega}}$
- independent of source, but can model it separately

Summary

- Spatial sound
 - sampling at more than one point gives information on origin direction
- Binaural perception
 - time & intensity cues used between/within ears
- Sound rendering
 - conventional stereo
 - HRTF-based
- Spatial analysis
 - optimal linear techniques
 - elusive auditory models

References

- Elizabeth M. Wenzel, Marianne Arruda, Doris J. Kistler, and Frederic L. Wightman. Localization using nonindividualized head-related transfer functions. *The Journal of the Acoustical Society of America*, 94(1):111–123, 1993.
- William G. Gardner. A real-time multichannel room simulator. *The Journal of the Acoustical Society of America*, 92(4):2395–2395, 1992.
- C. P. Brown and R. O. Duda. A structural model for binaural sound synthesis. IEEE Transactions on Speech and Audio Processing, 6(5):476–488, 1998.
- Michael I. Mandel and Daniel P. Ellis. EM localization and separation using interaural level and phase cues. In *IEEE Workshop on Applications of Signal Processing to Audio and Acoustics*, pages 275–278, 2007.
- J. C. Middlebrooks and D. M. Green. Sound localization by human listeners. Annu Rev Psychol, 42:135–159, 1991.
- Brian C. J. Moore. An Introduction to the Psychology of Hearing. Academic Press, fifth edition, April 2003. ISBN 0125056281.
- Jens Blauert. Spatial Hearing Revised Edition: The Psychophysics of Human Sound Localization. The MIT Press, October 1996.
- V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano. The cipic hrtf database. In Applications of Signal Processing to Audio and Acoustics, 2001 IEEE Workshop on the, pages 99–102, 2001.