EE E6820: Speech & Audio Processing & Recognition Lecture 5: Speech modeling

Dan Ellis <dpwe@ee.columbia.edu> Michael Mandel <mim@ee.columbia.edu>

Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

February 19, 2009

- Modeling speech signals
 Spectral and cepstral models
- 3 Linear predictive models (LPC)
- Other signal models
- 5 Speech synthesis

Outline

Modeling speech signals

- 2 Spectral and cepstral models
- 3 Linear predictive models (LPC)
- Other signal models
- 5 Speech synthesis

The speech signal

Elements of the speech signal

- spectral resonances (formants, moving)
- periodic excitation (voicing, pitched) + pitch contour
- noise excitation
- transients (stop-release bursts)
- amplitude modulation (nasals, approximants)
- timing!

The source-filter model

Notional separation of

- source: excitation, fine time-frequency structure
- filter: resonance, broad spectral structure

More a modeling approach than a single model

Signal modeling

- Signal models are a kind of representation
 - to make some aspect explicit
 - for efficiency
 - for flexibility
- Nature of model depends on goal
 - classification: remove irrelevant details
 - coding/transmission: remove perceptual irrelevance
 - modification: isolate control parameters
- But commonalities emerge
 - perceptually irrelevant detail (coding) will also be irrelevant for classification
 - modification domain will usually reflect 'independent' perceptual attributes
 - getting at the abstract information in the signal

Different influences for signal models

- Receiver
 - see how signal is treated by listeners
 - \rightarrow cochlea-style filterbank models ...
- Transmitter (source)
 - physical vocal apparatus can generate only a limited range of signals . . .

 $\rightarrow~$ LPC models of vocal tract resonances

- Making explicit particular aspects
 - compact, separable correlates of resonances
 - → cepstrum
 - modeling prominent features of NB spectrogram
 - → sinusoid models
 - addressing unnaturalness in synthesis
 - \rightarrow Harmonic+noise model

Application of (speech) signal models

- Classification / matching Goal: highlight important information
 - speech recognition (lexical content)
 - speaker recognition (identity or class)
 - other signal classification
 - content-based retrieval
- Coding / transmission / storage Goal: represent just enough information
 - ▶ real-time transmission, *e.g.* mobile phones
 - archive storage, e.g. voicemail
- Modification / synthesis

Goal: change certain parts independently

- speech synthesis / text-to-speech (change the words)
- speech transformation / disguise (change the speaker)

Outline

2 Spectral and cepstral models

3 Linear predictive models (LPC)

- Other signal models
- **5** Speech synthesis

Spectral and cepstral models

• Spectrogram seems like a good representation

- long history
- satisfying in use
- experts can 'read' the speech
- What is the information?
 - intensity in time-frequency cells
 - typically 5ms \times 200 Hz \times 50 dB
- \rightarrow Discarded detail:
 - phase
 - fine-scale timing
 - The starting point for other representations

Short-time Fourier transform (STFT) as filterbank

View spectrogram rows as coming from separate bandpass filters

Mathematically:

$$X[k, n_0] = \sum_n x[n]w[n - n_0] \exp\left(-j\frac{2\pi k(n - n_0)}{N}\right)$$
$$= \sum_n x[n]h_k[n_0 - n]$$

where
$$h_k[n] = w[-n] \exp\left(j\frac{2\pi kn}{N}\right)$$

Spectral models: which bandpass filters?

- Constant bandwidth? (analog / FFT)
- But: cochlea physiology & critical bandwidths
 - \rightarrow implement ear models with bandpass filters & choose bandwidths by e.g. CB estimates
- Auditory frequency scales
 - constant 'Q' (center freq / bandwidth), mel, Bark, ...

Gammatone filterbank

- Given bandwidths, which filter shapes?
 - match inferred temporal integration window
 - match inferred spectral shape (sharp high-freq slope)
 - keep it simple (since it's only approximate)
- \rightarrow Gammatone filters
 - 2N poles, 2 zeros, low complexity
 - reasonable linear match to cochlea

$$h[n] = n^{N-1} e^{-bn} \cos(\omega_i n)$$

Constant-BW vs. cochlea model

Magnitude smoothed over 5-20 ms time window

Limitations of spectral models

Not much data thrown away

- just fine phase / time structure (smoothing)
- little actual 'modeling'
- still a large representation
- Little separation of features
 - e.g. formants and pitch
- Highly correlated features
 - modifications affect multiple parameters
- But, quite easy to reconstruct
 - iterative reconstruction of lost phase

The cepstrum

• Original motivation: assume a source-filter model:

- Define 'Homomorphic deconvolution': source-filter convolution g[n]
 - $\mathsf{FT} \to \mathsf{product}$

$$\log \rightarrow sum$$

$$\mathsf{IFT} \to \mathsf{separate}$$
 fine structure

= deconvolution

Definition

Real cepstrum $c_n = idft(log |dft(x[n])|)$

$$g[n] * h[n]$$

$$G(e^{j\omega})H(e^{j\omega})$$

$$\log G(e^{j\omega}) + \log H(e^{j\omega})$$

$$c_g[n] + c_h[n]$$

Stages in cepstral deconvolution

- Original waveform has excitation fine structure convolved with resonances
- DFT shows harmonics modulated by resonances
- Log DFT is sum of harmonic 'comb' and resonant bumps
- IDFT separates out resonant bumps (low quefrency) and regular, fine structure ('pitch pulse')
- Selecting low-n cepstrum separates resonance information (deconvolution / 'liftering')

Properties of the cepstrum

- Separate source (fine) from filter (broad structure)
 - smooth the log magnitude spectrum to get resonances
- Smoothing spectrum is filtering along frequency
 - i.e. convolution applied in Fourier domain
 - → multiplication in IFT ('liftering')
- Periodicity in time → harmonics in spectrum → 'pitch pulse' in high-n cepstrum
- Low-n cepstral coefficients are DCT of broad filter / resonance shape

$$c_n = \int \log \left| X(e^{j\omega}) \right| (\cos n\omega + j \sin n\omega) \, d\omega$$

Aside: correlation of elements

- Cepstrum is popular in speech recognition
 - feature vector elements are decorrelated

- c₀ 'normalizes out' average log energy
- Decorrelated pdfs fit diagonal Gaussians
 - simple correlation is a waste of parameters
- DCT is close to PCA for (mel) spectra?

Outline

- 2 Spectral and cepstral models
- 3 Linear predictive models (LPC)
- Other signal models
- 5 Speech synthesis

Linear predictive modeling (LPC)

- LPC is a very successful speech model
 - it is mathematically efficient (IIR filters)
 - it is remarkably accurate for voice (fits source-filter distinction)
 - it has a satisfying physical interpretation (resonances)
- Basic math
 - model output as linear function of prior outputs:

$$s[n] = \left(\sum_{k=1}^{p} a_k s[n-k]\right) + e[n]$$

... hence "linear prediction" (pth order)
 e[n] is excitation (input), AKA prediction error

$$\Rightarrow \frac{S(z)}{E(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}} = \frac{1}{A(z)}$$

... all-pole modeling, 'autoregression' (AR) model

Vocal tract motivation for LPC

• Direct expression of source-filter model

$$s[n] = \left(\sum_{k=1}^{p} a_k s[n-k]\right) + e[n]$$
Pulse/noise
excitation
$$e[n] \qquad \bigvee ocal tract$$

$$H(z) = \frac{1}{A(z)} \quad s[n]$$

$$H(z) = \frac{1}{A(z)} \quad f(z) = \frac{1}{A(z)}$$

- Acoustic tube models suggest all-pole model for vocal tract
- Relatively slowly-changing
 - update A(z) every 10-20 ms
- Not perfect: Nasals introduce zeros

Estimating LPC parameters

• Minimize short-time squared prediction error

$$E = \sum_{n=1}^{m} e^{2}[n] = \sum_{n} \left(s[n] - \sum_{k=1}^{p} a_{k} s[n-k] \right)^{2}$$

• Differentiate w.r.t. a_k to get equations for each k:

$$0 = \sum_{n} 2\left(s[n] - \sum_{j=1}^{p} a_j s[n-j]\right) \left(-s[n-k]\right)$$
$$\sum_{n} s[n]s[n-k] = \sum_{j} a_j \sum_{n} s[n-j]s[n-k]$$
$$\phi(0,k) = \sum_{j} a_j \phi(j,k)$$

- where $\phi(j,k) = \sum_{n=1}^{m} s[n-j]s[n-k]$ are correlation coefficients
 - p linear equations to solve for all $a_j s \dots$

Evaluating parameters

- Linear equations $\phi(0,k) = \sum_{j=1}^{p} a_j \phi(j,k)$
- If *s*[*n*] is assumed to be zero outside of some window

$$\phi(j,k) = \sum_{n} s[n-j]s[n-k] = r_{ss}(|j-k|)$$

• $r_{ss}(\tau)$ is autocorrelation

• Hence equations become:

$$\begin{bmatrix} r(1) \\ r(2) \\ \vdots \\ r(p) \end{bmatrix} = \begin{bmatrix} r(0) & r(1) & \cdots & r(p-1) \\ r(1) & r(2) & \cdots & r(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ r(p-1) & r(p-2) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}$$

- Toeplitz matrix (equal antidiagonals) \rightarrow can use Durbin recursion to solve
- (Solve full $\phi(j, k)$ via Cholesky)

LPC illustration

Actual poles

E6820 (Ellis & Mandel)

Interpreting LPC

- Picking out resonances
 - if signal really was source + all-pole resonances, LPC should find the resonances
- Least-squares fit to spectrum
 - ▶ minimizing e²[n] in time domain is the same as minimizing E²(e^{jω}) by Parseval
 - $\rightarrow~$ close fit to spectral peaks; valleys don't matter
- Removing smooth variation in spectrum
 - $\frac{1}{A(z)}$ is a low-order approximation to S(z)
 - $\blacktriangleright \quad \frac{S(z)}{E(z)} = \frac{1}{A(z)}$
 - hence, residual E(z) = A(z)S(z) is a 'flat' version of S
- Signal whitening:
 - white noise (independent x[n]s) has flat spectrum
 - $\rightarrow\,$ whitening removes temporal correlation

Alternative LPC representations

• Many alternate *p*-dimensional representations

- ▶ coefficients {a_j}
- roots $\{\lambda_j\}$: $\prod (1 \lambda_j z^{-j}) = 1 \sum a_j z^{-1}$
- line spectrum frequencies.
- reflection coefficients $\{k_j\}$ from lattice form
- tube model log area ratios $g_j = \log\left(\frac{1-k_j}{1+k_j}\right)$
- Choice depends on:
 - mathematical convenience / complexity
 - quantization sensitivity
 - ease of guaranteeing stability
 - what is made explicit
 - distributions as statistics

LPC applications

- Analysis-synthesis (coding, transmission)
 - $S(z) = \frac{E(z)}{A(z)}$ hence can reconstruct by filtering e[n] with $\{a_j\}$ s
 - whitened, decorrelated, minimized e[n]s are easy to quantize
 - \ldots or can model e[n] e.g. as simple pulse train
- Recognition / classification
 - LPC fit responds to spectral peaks (formants)
 - can use for recognition (convert to cepstra?)
- Modification
 - separating source and filter supports cross-synthesis
 - pole / resonance model supports 'warping'
 - $\textit{e.g.} male \rightarrow \text{female}$

Aside: Formant tracking

- Formants carry (most?) linguistic information
- Why not classify \rightarrow speech recognition?
 - $\emph{e.g.}$ local maxima in cepstral-liftered spectrum pole frequencies in LPC fit
- But: recognition needs to work in all circumstances
 - formants can be obscured or undefined

 \rightarrow need more graceful, robust parameters

Outline

- 2 Spectral and cepstral models
- 3 Linear predictive models (LPC)
- Other signal models
- 5 Speech synthesis

Sinusoid modeling

- Early signal models required low complexity *e.g.* LPC
- Advances in hardware open new possibilities...
- NB spectrogram suggests harmonics model

- 'important' info in 2D surface is set of tracks?
- harmonic tracks have ~smooth properties
- straightforward resynthesis

Sine wave models

Model sound as sum of AM/FM sinusoids

$$s[n] = \sum_{k=1}^{N[n]} A_k[n] \cos(n \,\omega_k[n] + \phi_k[n])$$

- A_k , ω_k , ϕ_k piecewise linear or constant
- can enforce harmonicity: $\omega_k = k\omega_0$
- Extract parameters directly from STFT frames:

- ▶ find local maxima of |S[k, n]| along frequency
- track birth/death and correspondence

Finding sinusoid peaks

Look for local maxima along DFT frame
 i.e. |s[k − 1, n]| < |S[k, n]| > |S[k + 1, n]|

• Want exact frequency of implied sinusoid

- DFT is normally quantized quite coarsely
- e.g. 4000 Hz / 256 bands = 15.6 Hz/band

may also need interpolated unwrapped phase

• Or, use differential of phase along time (pvoc):

$$\omega = rac{a\dot{b} - b\dot{a}}{a^2 + b^2}$$
 where $S[k, n] = a + jb$

Sinewave modeling applications

- Modification (interpolation) and synthesis
 - connecting arbitrary ω and ϕ requires cubic phase interpolation (because $\omega = \dot{\phi}$)
- Types of modification
 - time and frequency scale modification
 - ... with or without changing formant envelope
 - concatenation / smoothing boundaries
 - phase realignment (for crest reduction)
- Non-harmonic signals? OK-ish

Harmonics + noise model

- Motivation to improve sinusoid model because
 - problems with analysis of real (noisy) signals
 - problems with synthesis quality (esp. noise)
 - perceptual suspicions
- Model

$$s[n] = \sum_{k=1}^{N[n]} \underbrace{A_k[n] \cos(nk\omega_0[n])}_{\text{Harmonics}} + \underbrace{e[n](h_n[n] * b[n])}_{\text{Noise}}$$

- sinusoids are forced to be harmonic
- remainder is filtered and time-shaped noise
- 'Break frequency' $F_m[n]$ between H and N

HNM analysis and synthesis

Dynamically adjust $F_m[n]$ based on 'harmonic test':

Noise has envelopes in time e[n] and frequency H_n

• reconstruct bursts / synchronize to pitch pulses

L5: Speech modeling

Outline

- 2 Spectral and cepstral models
- 3 Linear predictive models (LPC)
- Other signal models
- 5 Speech synthesis

Speech synthesis

- One thing you can do with models
- Synthesis easier than recognition?
 - listeners do the work
 - ... but listeners are very critical
- Overview of synthesis

- normalization disambiguates text (abbreviations)
- phonetic realization from pronunciation dictionary
- prosodic synthesis by rule (timing, pitch contour)
- ... all control waveform generation

Source-filter synthesis

Flexibility of source-filter model is ideal for speech synthesis

Excitation source issues

- voiced / unvoiced / mixture ([th] etc.)
- pitch cycles of voiced segments
- glottal pulse shape \rightarrow voice quality?

Vocal tract modeling

Simplest idea: store a single VT model for each phoneme

• but discontinuities are very unnatural

Improve by smoothing between templates

• trick is finding the right domain

Cepstrum-based synthesis

- Low-n cepstrum is compact model of target spectrum
- Can invert to get actual VT IR waveforms:

$$c_n = idft(\log |dft(x[n])|)$$

 $\Rightarrow h[n] = idft(exp(dft(c_n)))$

- All-zero (FIR) VT response
 - \rightarrow can pre-convolve with glottal pulses

cross-fading between templates OK

LPC-based synthesis

- Very compact representation of target spectra
 - 3 or 4 pole pairs per template
- Low-order IIR filter \rightarrow very efficient synthesis
- How to interpolate?
 - cannot just interpolate a_i in a running filter
 - but lattice filter has better-behaved interpolation

- What to use for excitation
 - residual from original analysis
 - reconstructed periodic pulse train
 - parametrized residual resynthesis

Diphone synethsis

- Problems in phone-concatenation synthesis
 - phonemes are context-dependent
 - coarticulation is complex
 - transitions are critical to perception
- $\rightarrow\,$ store transitions instead of just phonemes

- \sim 40 phones \Rightarrow \sim 800 diphones
- or even more context if have larger database
- How to splice diphones together?
 - TD-PSOLA: align pitch pulses and cross fade
 - MBROLA: normalized multiband

HNM synthesis

- High quality resynthesis of real diphone units + parametric representation for modification
 - pitch, timing modifications
 - removal of discontinuities at boundaries
- Synthesis procedure
 - linguistic processing gives phones, pitch, timing
 - database search gives best-matching units
 - use HNM to fine-tune pitch and timing
 - cross-fade A_k and ω_0 parameters at boundaries

- Careful preparation of database is key
 - sine models allow phase alignment of all units
 - larger database improves unit match

Generating prosody

- The real factor limiting speech synthesis?
- Waveform synthesizers have inputs for
 - intensity (stress)
 - duration (phrasing)
 - fundamental frequency (pitch)
- Curves produced by superposition of (many) inferred linguistic rules
 - phrase final lengthening, unstressed shortening, ...

• Or learn rules from transcribed elements

E6820 (Ellis & Mandel)

Summary

- Range of models
 - spectral, cepstral
 - LPC, sinusoid, HNM
- Range of applications
 - general spectral shape (filterbank) \rightarrow ASR
 - precise description (LPC + residual) \rightarrow coding
 - ▶ pitch, time modification (HNM) \rightarrow synthesis
- Issues
 - performance vs computational complexity
 - generality vs accuracy
 - representation size vs quality

Parting thought

not all parameters are created equal...

References

- Alan V. Oppenheim. Speech analysis-synthesis system based on homomorphic filtering. *The Journal of the Acoustical Society of America*, 45(1):309–309, 1969.
- J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4): 561–580, 1975.
- Bishnu S. Atal and Suzanne L. Hanauer. Speech analysis and synthesis by linear prediction of the speech wave. *The Journal of the Acoustical Society of America*, 50(2B):637–655, 1971.
- J.E. Markel and AH Gray. *Linear Prediction of Speech*. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.
- R. McAulay and T. Quatieri. Speech analysis/synthesis based on a sinusoidal representation. Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on, 34(4):744–754, 1986.
- Wael Hamza, Ellen Eide, Raimo Bakis, Michael Picheny, and John Pitrelli. The IBM expressive speech synthesis system. In *INTERSPEECH*, pages 2577–2580, October 2004.