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The speech signal

watch thin as a dimeahas
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Elements of the speech signal

spectral resonances (formants, moving)

periodic excitation (voicing, pitched) + pitch contour

noise excitation

transients (stop-release bursts)

amplitude modulation (nasals, approximants)

timing!
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The source-filter model

Notional separation of

source: excitation, fine time-frequency structure

filter: resonance, broad spectral structure

Glottal pulse
train

Frication
noise

Vocal tract
resonances+ Radiation

characteristic
Speech

Voiced/

unvoiced

Pitch

Formants

Source Filter

t

f

t

More a modeling approach than a single model
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Signal modeling

Signal models are a kind of representation
I to make some aspect explicit
I for efficiency
I for flexibility

Nature of model depends on goal
I classification: remove irrelevant details
I coding/transmission: remove perceptual irrelevance
I modification: isolate control parameters

But commonalities emerge
I perceptually irrelevant detail (coding) will also be irrelevant for

classification
I modification domain will usually reflect ‘independent’

perceptual attributes
I getting at the abstract information in the signal
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Different influences for signal models

Receiver
I see how signal is treated by listeners

→ cochlea-style filterbank models . . .

Transmitter (source)
I physical vocal apparatus can generate only a limited range of

signals . . .

→ LPC models of vocal tract resonances

Making explicit particular aspects
I compact, separable correlates of resonances

→ cepstrum

I modeling prominent features of NB spectrogram

→ sinusoid models

I addressing unnaturalness in synthesis

→ Harmonic+noise model
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Application of (speech) signal models

Classification / matching
Goal: highlight important information

I speech recognition (lexical content)
I speaker recognition (identity or class)
I other signal classification
I content-based retrieval

Coding / transmission / storage
Goal: represent just enough information

I real-time transmission, e.g. mobile phones
I archive storage, e.g. voicemail

Modification / synthesis
Goal: change certain parts independently

I speech synthesis / text-to-speech (change the words)
I speech transformation / disguise (change the speaker)
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Spectral and cepstral models

Spectrogram seems like a good representation
I long history
I satisfying in use
I experts can ‘read’ the speech

What is the information?
I intensity in time-frequency cells
I typically 5ms × 200 Hz × 50 dB

→ Discarded detail:
I phase
I fine-scale timing

The starting point for other representations
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Short-time Fourier transform (STFT) as filterbank
View spectrogram rows as coming from separate bandpass filters

sound

f

Mathematically:

X [k , n0] =
∑
n

x [n]w [n − n0] exp

(
−j

2πk(n − n0)

N

)
=
∑
n

x [n]hk [n0 − n]

where hk [n] = w [−n] exp
(
j 2πkn

N

)
n

hk[n]
w[-n]

ω

Hk(ejω)
W(ej(ω − 2πk/N))

2πk/N
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Spectral models: which bandpass filters?

Constant bandwidth? (analog / FFT)

But: cochlea physiology & critical bandwidths

→ implement ear models with bandpass filters & choose
bandwidths by e.g. CB estimates

Auditory frequency scales
I constant ‘Q’ (center freq / bandwidth), mel, Bark, . . .
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Gammatone filterbank
Given bandwidths, which filter shapes?

I match inferred temporal integration window
I match inferred spectral shape (sharp high-freq slope)
I keep it simple (since it’s only approximate)

→ Gammatone filters
I 2N poles, 2 zeros, low complexity
I reasonable linear match to cochlea

h[n] = nN−1e−bn cos(ωin)
time →
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Constant-BW vs. cochlea model

Frequency responses Spectrograms
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Limitations of spectral models

Not much data thrown away
I just fine phase / time structure (smoothing)
I little actual ‘modeling’
I still a large representation

Little separation of features

e.g. formants and pitch

Highly correlated features
I modifications affect multiple parameters

But, quite easy to reconstruct
I iterative reconstruction of lost phase
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The cepstrum

Original motivation: assume a source-filter model:

Excitation

source g[n]

n

nResonance

filter H(ejω)

ω

Define ‘Homomorphic deconvolution’:
source-filter convolution g [n] ∗ h[n]
FT → product G (e jω)H(e jω)
log → sum log G (e jω) + log H(e jω)
IFT → separate fine structure cg [n] + ch[n]
= deconvolution

Definition
Real cepstrum cn = idft (log |dft(x [n])|)
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Stages in cepstral deconvolution

Original waveform has excitation
fine structure convolved with
resonances

DFT shows harmonics modulated
by resonances

Log DFT is sum of harmonic
‘comb’ and resonant bumps

IDFT separates out resonant
bumps (low quefrency) and regular,
fine structure (‘pitch pulse’)

Selecting low-n cepstrum separates
resonance information
(deconvolution / ‘liftering’)
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Properties of the cepstrum

Separate source (fine) from filter (broad structure)
I smooth the log magnitude spectrum to get resonances

Smoothing spectrum is filtering along frequency
i.e. convolution applied in Fourier domain
→ multiplication in IFT (‘liftering’)

Periodicity in time → harmonics in spectrum → ‘pitch pulse’
in high-n cepstrum

Low-n cepstral coefficients are DCT of broad filter /
resonance shape

cn =

∫
log
∣∣X (e jω)

∣∣ (cos nω +����j sin nω) dω
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Aside: correlation of elements

Cepstrum is popular in speech recognition
I feature vector elements are decorrelated
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5

10

15

20

25

4

8

12

16

20

5 10 15 20

4

8

12

16

20

-5

-4

-3

-2

50 100 150

C
ep

st
ra

l 

co

ef
fi

ci
en

ts
A

u
d

it
o

ry
 


sp
ec

tr
u

m

Covariance matrixFeatures Example joint distrib (10,15)

2
4
6
8

10
12
14
16
18

-5 0 5
-4
-3
-2
-1
0
1
2
3

I c0 ‘normalizes out’ average log energy

Decorrelated pdfs fit diagonal Gaussians
I simple correlation is a waste of parameters

DCT is close to PCA for (mel) spectra?
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Linear predictive modeling (LPC)

LPC is a very successful speech model
I it is mathematically efficient (IIR filters)
I it is remarkably accurate for voice (fits source-filter distinction)
I it has a satisfying physical interpretation (resonances)

Basic math
I model output as linear function of prior outputs:

s[n] =

(
p∑

k=1

aks[n − k]

)
+ e[n]

. . . hence “linear prediction” (pth order)
I e[n] is excitation (input), AKA prediction error

⇒ S(z)

E (z)
=

1

1−
∑p

k=1 akz−k
=

1

A(z)

. . . all-pole modeling, ‘autoregression’ (AR) model
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Vocal tract motivation for LPC

Direct expression of source-filter model

s[n] =

(
p∑

k=1

aks[n − k]

)
+ e[n]

Pulse/noise

excitation

Vocal tract

e[n] s[n]H(z) = 1/A(z)

z-plane

H(z)

f

|H(ejω)|

Acoustic tube models suggest all-pole model for vocal tract

Relatively slowly-changing
I update A(z) every 10-20 ms

Not perfect: Nasals introduce zeros
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Estimating LPC parameters

Minimize short-time squared prediction error

E =
m∑

n=1

e2[n] =
∑
n

(
s[n]−

p∑
k=1

aks[n − k]

)2

Differentiate w.r.t. ak to get equations for each k:

0 =
∑
n

2

s[n]−
p∑

j=1

ajs[n − j ]

 (−s[n − k])

∑
n

s[n]s[n − k] =
∑

j

aj

∑
n

s[n − j ]s[n − k]

φ(0, k) =
∑

j

ajφ(j , k)

where φ(j , k) =
∑m

n=1 s[n − j ]s[n − k] are correlation
coefficients

I p linear equations to solve for all ajs . . .
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Evaluating parameters

Linear equations φ(0, k) =
∑p

j=1 ajφ(j , k)

If s[n] is assumed to be zero outside of some window

φ(j , k) =
∑
n

s[n − j ]s[n − k] = rss(|j − k |)

I rss(τ) is autocorrelation

Hence equations become:
r(1)
r(2)

...
r(p)

 =


r(0) r(1) · · · r(p − 1)
r(1) r(2) · · · r(p − 2)

...
...

. . .
...

r(p − 1) r(p − 2) · · · r(0)




a1

a2
...

ap


Toeplitz matrix (equal antidiagonals)
→ can use Durbin recursion to solve

(Solve full φ(j , k) via Cholesky)
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LPC illustration
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Interpreting LPC

Picking out resonances
I if signal really was source + all-pole resonances, LPC should

find the resonances

Least-squares fit to spectrum
I minimizing e2[n] in time domain is the same as minimizing

E 2(e jω) by Parseval
→ close fit to spectral peaks; valleys don’t matter

Removing smooth variation in spectrum
I 1

A(z) is a low-order approximation to S(z)

I
S(z)
E(z) = 1

A(z)
I hence, residual E (z) = A(z)S(z) is a ‘flat’ version of S

Signal whitening:
I white noise (independent x [n]s) has flat spectrum
→ whitening removes temporal correlation
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Alternative LPC representations

Many alternate p-dimensional representations
I coefficients {aj}
I roots {λj}:

∏(
1− λjz

−j
)

= 1−
∑

ajz
−1

I line spectrum frequencies. . .
I reflection coefficients {kj} from lattice form

I tube model log area ratios gj = log
(

1−kj

1+kj

)
Choice depends on:

I mathematical convenience / complexity
I quantization sensitivity
I ease of guaranteeing stability
I what is made explicit
I distributions as statistics
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LPC applications

Analysis-synthesis (coding, transmission)

I S(z) = E(z)
A(z) hence can reconstruct by filtering e[n] with {aj}s

I whitened, decorrelated, minimized e[n]s are easy to quantize
. . . or can model e[n] e.g. as simple pulse train

Recognition / classification
I LPC fit responds to spectral peaks (formants)
I can use for recognition (convert to cepstra?)

Modification
I separating source and filter supports cross-synthesis
I pole / resonance model supports ‘warping’

e.g. male → female
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Aside: Formant tracking

Formants carry (most?) linguistic information

Why not classify → speech recognition?

e.g. local maxima in cepstral-liftered spectrum pole frequencies in
LPC fit

But: recognition needs to work in all circumstances
I formants can be obscured or undefined

fr
eq

 / 
H

z
fr

eq
 / 

H
z

0

1000

2000

3000

4000

time / s0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1000

2000

3000

4000

Original (mpgr1_sx419)

Noise-excited LPC resynthesis with pole freqs

→ need more graceful, robust parameters
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Sinusoid modeling

Early signal models required low complexity

e.g. LPC

Advances in hardware open new possibilities. . .

NB spectrogram suggests harmonics model
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I ‘important’ info in 2D surface is set of tracks?
I harmonic tracks have ∼smooth properties
I straightforward resynthesis
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Sine wave models

Model sound as sum of AM/FM sinusoids

s[n] =

N[n]∑
k=1

Ak [n] cos(nωk [n] + φk [n])

I Ak , ωk , φk piecewise linear or constant
I can enforce harmonicity: ωk = kω0

Extract parameters directly from STFT frames:

freq

time

mag

I find local maxima of |S [k , n]| along frequency
I track birth/death and correspondence
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Finding sinusoid peaks

Look for local maxima along DFT frame

i.e. |s[k − 1, n]| < |S [k , n]| > |S [k + 1, n]|
Want exact frequency of implied sinusoid

I DFT is normally quantized quite coarsely
e.g. 4000 Hz / 256 bands = 15.6 Hz/band

m
ag

ni
tu

de

frequency

spectral samples

quadratic fit to 3 points

interpolated frequency 

and magnitude

I may also need interpolated unwrapped phase

Or, use differential of phase along time (pvoc):

ω =
aḃ − bȧ

a2 + b2
where S [k, n] = a + jb
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Sinewave modeling applications

Modification (interpolation) and synthesis
I connecting arbitrary ω and φ requires cubic phase interpolation

(because ω = φ̇)

Types of modification
I time and frequency scale modification

. . . with or without changing formant envelope

I concatenation / smoothing boundaries
I phase realignment (for crest reduction)

Non-harmonic signals? OK-ish
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Harmonics + noise model

Motivation to improve sinusoid model because
I problems with analysis of real (noisy) signals
I problems with synthesis quality (esp. noise)
I perceptual suspicions

Model

s[n] =

N[n]∑
k=1

Ak [n] cos(nkω0[n])︸ ︷︷ ︸
Harmonics

+ e[n](hn[n] ∗ b[n])︸ ︷︷ ︸
Noise

I sinusoids are forced to be harmonic
I remainder is filtered and time-shaped noise

‘Break frequency’ Fm[n] between H and N

Harmonicity limit

Fm[n]

Harmonics
Noise
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dB
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20
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HNM analysis and synthesis
Dynamically adjust Fm[n] based on ‘harmonic test’:

time / s
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reconstruct bursts / synchronize to pitch pulses
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Speech synthesis

One thing you can do with models

Synthesis easier than recognition?
I listeners do the work

. . . but listeners are very critical

Overview of synthesis

text speechText

normalization

Synthesis

algorithm

Phoneme

generation

Prosody

generation

I normalization disambiguates text (abbreviations)
I phonetic realization from pronunciation dictionary
I prosodic synthesis by rule (timing, pitch contour)

. . . all control waveform generation
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Source-filter synthesis

Flexibility of source-filter model is ideal for speech synthesis

Glottal pulse
source

Noise
source

Vocal tract
filter+

Speech
Voiced/
unvoiced

Pitch
info

Phoneme
info

t

t

t

t

th ax k ae t

Excitation source issues

voiced / unvoiced / mixture ([th] etc.)

pitch cycles of voiced segments

glottal pulse shape → voice quality?
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Vocal tract modeling
Simplest idea: store a single VT model for each phoneme

th ax k ae t
time

fr
eq

but discontinuities are very unnatural

Improve by smoothing between templates

th ax k ae t
time

fr
eq

trick is finding the right domain

E6820 (Ellis & Mandel) L5: Speech modeling February 19, 2009 39 / 46



Cepstrum-based synthesis

Low-n cepstrum is compact model of target spectrum

Can invert to get actual VT IR waveforms:

cn = idft(log |dft(x [n])|)
⇒ h[n] = idft(exp(dft(cn)))

All-zero (FIR) VT response

→ can pre-convolve with glottal pulses

time

ee

ae

ah

Glottal pulse

inventory Pitch pulse times (from pitch contour)

I cross-fading between templates OK
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LPC-based synthesis

Very compact representation of target spectra
I 3 or 4 pole pairs per template

Low-order IIR filter → very efficient synthesis

How to interpolate?
I cannot just interpolate aj in a running filter
I but lattice filter has better-behaved interpolation

+ +

z-1a1 kp-1

a2

a3

z-1

z-1

e[n]

+

e[n] s[n]

-1

s[n] +

k0

+

z-1z-1

z-1

+

- -

What to use for excitation
I residual from original analysis
I reconstructed periodic pulse train
I parametrized residual resynthesis
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Diphone synethsis

Problems in phone-concatenation synthesis
I phonemes are context-dependent
I coarticulation is complex
I transitions are critical to perception

→ store transitions instead of just phonemes

mdnctcl

^

θ zwzh e

III ayεPhones

Diphone

segments

I ∼ 40 phones ⇒ ∼ 800 diphones
I or even more context if have larger database

How to splice diphones together?
I TD-PSOLA: align pitch pulses and cross fade
I MBROLA: normalized multiband
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HNM synthesis

High quality resynthesis of real diphone units + parametric
representation for modification

I pitch, timing modifications
I removal of discontinuities at boundaries

Synthesis procedure
I linguistic processing gives phones, pitch, timing
I database search gives best-matching units
I use HNM to fine-tune pitch and timing
I cross-fade Ak and ω0 parameters at boundaries

time

freq

Careful preparation of database is key
I sine models allow phase alignment of all units
I larger database improves unit match
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Generating prosody

The real factor limiting speech synthesis?

Waveform synthesizers have inputs for
I intensity (stress)
I duration (phrasing)
I fundamental frequency (pitch)

Curves produced by superposition of (many) inferred linguistic
rules

I phrase final lengthening, unstressed shortening, . . .

Or learn rules from transcribed elements
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Summary

Range of models
I spectral, cepstral
I LPC, sinusoid, HNM

Range of applications
I general spectral shape (filterbank) → ASR
I precise description (LPC + residual) → coding
I pitch, time modification (HNM) → synthesis

Issues
I performance vs computational complexity
I generality vs accuracy
I representation size vs quality

Parting thought

not all parameters are created equal. . .
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