EE E6820: Speech \& Audio Processing \& Recognition

Lecture 4: Auditory Perception

Mike Mandel mim@ee.columbia.edu
Dan Ellis dpwe@ee.columbia.edu
Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820
February 10, 2009

(1) Motivation: Why \& how
(2) Auditory physiology
(3) Psychophysics: Detection \& discrimination
(4) Pitch perception
(5) Speech perception
(6) Auditory organization \& Scene analysis

Outline

(1) Motivation: Why \& how

2 Auditory physiology

3 Psychophysics: Detection \& discrimination

4 Pitch perception
(5) Speech perception
(6) Auditory organization \& Scene analysis

Why study perception?

- Perception is messy: can we avoid it?

No!

- Audition provides the 'ground truth' in audio
- what is relevant and irrelevant
- subjective importance of distortion (coding etc.)
- (there could be other information in sound...)
- Some sounds are 'designed' for audition
- co-evolution of speech and hearing
- The auditory system is very successful
- we would do extremely well to duplicate it
- We are now able to model complex systems
- faster computers, bigger memories

How to study perception?

Three different approaches:

- Analyze the example: physiology

- dissection \& nerve recordings
- Black box input/output: psychophysics

- fit simple models of simple functions
- Information processing models
- investigate and model complex functions
e.g. scene analysis, speech perception

Outline

(1) Motivation: Why \& how
(2) Auditory physiology

3 Psychophysics: Detection \& discrimination

4 Pitch perception
(5) Speech perception

6 Auditory organization \& Scene analysis

Physiology

- Processing chain from air to brain:

- Study via:
- anatomy
- nerve recordings
- Signals flow in both directions

Outer \& middle ear

- Pinna 'horn'
- complex reflections give spatial (elevation) cues
- Ear canal
- acoustic tube
- Middle ear
- bones provide impedance matching

Inner ear: Cochlea

- Mechanical input from middle ear starts traveling wave moving down Basilar membrane
- Varying stiffness and mass of BM results in continuous variation of resonant frequency
- At resonance, traveling wave energy is dissipated in BM vibration
- Frequency (Fourier) analysis

Cochlea hair cells

- Ear converts sound to BM motion
- each point on BM corresponds to a frequency

- Hair cells on BM convert motion into nerve impulses (firings)
- Inner Hair Cells detect motion
- Outer Hair Cells? Variable damping?

Inner Hair Cells

- IHCs convert BM vibration into nerve firings
- Human ear has ~ 3500 IHCs
- each IHC has ~ 7 connections to Auditory Nerve
- Each nerve fires (sometimes) near peak displacement

- Histogram to get firing probability

Auditory nerve (AN) signals

Single nerve measurements

Rate vs intensity

Hard to measure: probe living ANs?

AN population response

All the information the brain has about sound

- average rate \& spike timings on 30,000 fibers

Not unlike a (constant-Q) spectrogram

Beyond the auditory nerve

- Ascending and descending
- Tonotopic \times ?
- modulation, position, source??

Periphery models

- Modeled aspects
- outer / middle ear
- hair cell transduction
- cochlea filtering

- efferent feedback?

Results: 'neurogram' / 'cochleagram'

Outline

(1) Motivation: Why \& how
(2) Auditory physiology
(3) Psychophysics: Detection \& discrimination

4 Pitch perception
(5) Speech perception

6 Auditory organization \& Scene analysis

Psychophysics

- Physiology looks at the implementation Psychology looks at the function/behavior
- Analyze audition as signal detection: $p(\theta \mid x)$
- psychological tests reflect internal decisions
- assume optimal decision process
- infer nature of internal representations, noise, ...
\rightarrow lower bounds on more complex functions
- Different aspects to measure
- time, frequency, intensity
- tones, complexes, noise
- binaural
- pitch, detuning

Basic psychophysics

- Relate physical and perceptual variables
e.g. intensity \rightarrow loudness
frequency \rightarrow pitch
- Methodology: subject tests
- just noticeable difference (JND)
- magnitude scaling e.g. "adjust to twice as loud"
- Results for Intensity vs Loudness:

Weber's law $\Delta I \propto I \Rightarrow \log (L)=k \log (I)$

$$
\begin{aligned}
\log _{2}(L) & =0.3 \log _{2}(I) \\
& =0.3 \frac{\log _{10} I}{\log _{10} 2} \\
& =\frac{0.3}{\log _{10} 2} \frac{\mathrm{~dB}}{10} \\
& =\mathrm{dB} / 10
\end{aligned}
$$

Loudness as a function of frequency

Fletcher-Munsen equal-loudness curves

Loudness as a function of bandwidth

- Same total energy, different distribution e.g. 2 channels at -6 dB (not -10 dB)

- Critical bands: independent frequency channels
- ~25 total (4-6 / octave)

Simultaneous masking

A louder tone can 'mask' the perception of a second tone nearby in frequency:

Suggests an 'internal noise' model:

Sequential masking

Backward/forward in time:

\rightarrow Time-frequency masking 'skirt':

What we do and don't hear

- Timing: 2 ms attack resolution, 20 ms discrimination
- but: spectral splatter
- Tuning: $\sim 1 \%$ discrimination
- but: beats
- Spectrum: profile changes, formants
- variables time-frequency resolution
- Harmonic phase?
- Noisy signals \& texture
- (Trace vs categorical memory)

Outline

(1) Motivation: Why \& how
(2) Auditory physiology

3 Psychophysics: Detection \& discrimination

4 Pitch perception
(5) Speech perception
(6) Auditory organization \& Scene analysis

Pitch perception: a classic argument in psychophysics

- Harmonic complexes are a pattern on AN

- but give a fused percept (ecological)
- What determines the pitch percept?
- not the fundamental
- How is it computed?

Two competing models: place and time

Place model of pitch

- AN excitation pattern shows individual peaks
- 'Pattern matching' method to find pitch

- Support: Low harmonics are very important
- But: Flat-spectrum noise can carry pitch

Time model of pitch

- Timing information is preserved in AN down to $\sim 1 \mathrm{~ms}$ scale
- Extract periodicity by e.g. autocorrelation and combine across frequency channels

- But: HF gives weak pitch (in practice)

Alternate \& competing cues

- Pitch perception could rely on various cues
- average excitation pattern
- summary autocorrelation
- more complex pattern matching
- Relying on just one cue is brittle
- e.g. missing fundamental
\rightarrow Perceptual system appears to use a flexible, opportunistic combination
- Optimal detector justification?

$$
\begin{aligned}
\underset{\theta}{\operatorname{argmax}} p(\theta \mid \mathbf{x}) & =\underset{\theta}{\operatorname{argmax}} p(\mathbf{x} \mid \theta) p(\theta) \\
& =\underset{\theta}{\operatorname{argmax}} p\left(x_{1} \mid \theta\right) p\left(x_{2} \mid \theta\right) p(\theta)
\end{aligned}
$$

- if x_{1} and x_{2} are conditionally independent

Outline

(1) Motivation: Why \& how
(2) Auditory physiology

3 Psychophysics: Detection \& discrimination

4 Pitch perception
(5) Speech perception

6 Auditory organization \& Scene analysis

Speech perception

- Highly specialized function
- subsequent to source organization?
... but also can interact
- Kinds of speech sounds

Cues to phoneme perception

Linguists describe speech with phonemes

Acoustic-phoneticians describe phonemes by

- formants \& transitions

- bursts \& onset times

Categorical perception

- (Some) speech sounds perceived categorically rather than analogically
- e.g. stop-burst and timing:

- tokens within category are hard to distinguish
- category boundaries are very sharp
- Categories are learned for native tongue
- "merry" / "Mary" / "marry"

Where is the information in speech?

'Articulation' of high/low-pass filtered speech:

- sums to more than $1 .$. .

Speech message is highly redundant
e.g. constraints of language, context
\rightarrow listeners can understand with very few cues

Top-down influences: Phonemic restoration (Warren, 1970)

What if a noise burst obscures speech?

- auditory system 'restores' the missing phoneme
. . . based on semantic content
...even in retrospect
Subjects are typically unaware of which sounds are restored

A predisposition for speech: Sinewave replicas

Replace each formant with a single sinusoid (Remez et al., 1981)

- speech is (somewhat) intelligible
- people hear both whistles and speech ("duplex")
- processed as speech despite un-speech-like

What does it take to be speech?

Simultaneous vowels

Mix synthetic vowels with different $f_{0} s$

DV identification vs. $\Delta \mathrm{f}_{0}$ (200ms) (Culling \& Darwin 1993)

Pitch difference helps (though not necessarily)

Computational models of speech perception

- Various theoretical-practical models of speech comprehension e.g.

- Open questions:
- mechanism of phoneme classification
- mechanism of lexical recall
- mechanism of grammar constraints
- ASR is a practical implementation (?)

Outline

(1) Motivation: Why \& how

(2) Auditory physiology
(3) Psychophysics: Detection \& discrimination

4 Pitch perception
(5) Speech perception
(6) Auditory organization \& Scene analysis

Auditory organization

- Detection model is huge simplification
- The real role of hearing is much more general: Recover useful information from the outside world
\rightarrow Sound organization into events and sources

- Research questions:
- what determines perception of sources?
- how do humans separate mixtures?
- how much can we tell about a source?

Auditory scene analysis: simultaneous fusion

- Harmonics are distinct on AN, but perceived as one sound ("fused")

- depends on common onset
- depends on harmonicity (common period)
- Methodologies:
- ask subject how many 'objects'
- match attributes e.g. object pitch
- manipulate high level e.g. vowel identity

Sequential grouping: streaming

- Pattern / rhythm: property of a set of objects
- subsequent to fusion \because employs fused events?

- Measure by relative timing judgments
- cannot compare between streams
- Separate 'coherence' and 'fusion' boundaries
- Can interact and compete with fusion

Continuity and restoration

- Tone is interrupted by noise burst: what happened?

time

- masking makes tone undetectable during noise
- Need to infer most probable real-world events
- observation equally likely for either explanation
- prior on continuous tone much higher \Rightarrow choose
- Top-down influence on perceived events...

Models of auditory organization

Psychological accounts suggest bottom-up

- Brown and Cooke (1994)

Complicated in practice

- formation of separate elements
- contradictory cues
- influence of top-down constraints (context, expectations, ...)

Summary

- Auditory perception provides the 'ground truth' underlying audio processing
- Physiology specifies information available
- Psychophysics measure basic sensitivities
- Sounds sources require further organization
- Strong contextual effects in speech perception

[^0]
References

Richard M. Warren. Perceptual restoration of missing speech sounds. Science, 167 (3917):392-393, January 1970.
R. E. Remez, P. E. Rubin, D. B. Pisoni, and T. D. Carrell. Speech perception without traditional speech cues. Science, 212(4497):947-949, May 1981.
G. J. Brown and M. Cooke. Computational auditory scene analysis. Computer Speech \& Language, 8(4):297-336, 1994.
Brian C. J. Moore. An Introduction to the Psychology of Hearing. Academic Press, fifth edition, April 2003. ISBN 0125056281.
James O. Pickles. An Introduction to the Physiology of Hearing. Academic Press, second edition, January 1988. ISBN 0125547544.

[^0]: Parting thought
 Is pitch central to communication? Why?

