EE E6820: Speech \& Audio Processing \& Recognition

Lecture 2: Acoustics

Dan Ellis \& Mike Mandel

Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

$$
\text { January 29, } 2009
$$

(1) The wave equation
(2) Acoustic tubes: reflections \& resonance
(3) Oscillations \& musical acoustics
(4) Spherical waves \& room acoustics

Outline

(1) The wave equation
(2) Acoustic tubes: reflections \& resonance
(3) Oscillations \& musical acoustics
(4) Spherical waves \& room acoustics

Acoustics \& sound

- Acoustics is the study of physical waves
- (Acoustic) waves transmit energy without permanently displacing matter (e.g. ocean waves)
- Same math recurs in many domains
- Intuition: pulse going down a rope

The wave equation

Consider a small section of the rope

Displacement $y(x)$, tension S, mass $\epsilon \boldsymbol{d} x$
\Rightarrow Lateral force is

$$
\begin{aligned}
F_{y} & =S \sin \left(\phi_{2}\right)-S \sin \left(\phi_{1}\right) \\
& \approx S \frac{\partial^{2} y}{\partial x^{2}} d x
\end{aligned}
$$

Wave equation (2)

Newton's law: $F=m a$

$$
S \frac{\partial^{2} y}{\partial x^{2}} d x=\epsilon d x \frac{\partial^{2} y}{\partial t^{2}}
$$

Call $c^{2}=S / \epsilon$ (tension to mass-per-length) hence, the Wave Equation:

$$
c^{2} \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}}
$$

... partial DE relating curvature and acceleration

Solution to the wave equation

If $y(x, t)=f(x-c t)($ any $f(\cdot))$
then

$$
\begin{aligned}
\frac{\partial y}{\partial x} & =f^{\prime}(x-c t) & \frac{\partial y}{\partial t} & =-c f^{\prime}(x-c t) \\
\frac{\partial^{2} y}{\partial x^{2}} & =f^{\prime \prime}(x-c t) & \frac{\partial^{2} y}{\partial t^{2}} & =c^{2} f^{\prime \prime}(x-c t)
\end{aligned}
$$

also works for $y(x, t)=f(x+c t)$
Hence, general solution:

$$
\begin{gathered}
c^{2} \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}} \\
\Rightarrow y(x, t)=y^{+}(x-c t)+y^{-}(x+c t)
\end{gathered}
$$

Solution to the wave equation (2)

- $y^{+}(x-c t)$ and $y^{-}(x+c t)$ are traveling waves
- shape stays constant but changes position

- c is traveling wave velocity $(\Delta x / \Delta t)$
- y^{+}moves right, y^{-}moves left
- resultant $y(x)$ is sum of the two waves

Wave equation solutions (3)

- What is the form of y^{+}, y^{-}?
- any doubly-differentiable function will satisfy wave equation
- Actual waveshapes dictated by boundary conditions
- e.g. $y(x)$ at $t=0$
- plus constraints on y at particular x s
e.g. input motion $y(0, t)=m(t)$
rigid termination $y(L, t)=0$

Terminations and reflections

- System constraints:
- initial $y(x, 0)=0$ (flat rope)
- input $y(0, t)=m(t)$ (at agent's hand) $\left(\rightarrow y^{+}\right)$
- termination $y(L, t)=0$ (fixed end)
- wave equation $y(x, t)=y^{+}(x-c t)+y^{-}(x+c t)$
- At termination:
- $y(L, t)=0 \Rightarrow y^{+}(L-c t)=-y^{-}(L+c t)$
i.e. y^{+}and y^{-}are mirrored in time and amplitude around $x=L$ \Rightarrow inverted reflection at termination

[simulation
 travel1.m]

Outline

(1) The wave equation
(2) Acoustic tubes: reflections \& resonance
(3) Oscillations \& musical acoustics
(4) Spherical waves \& room acoustics

Acoustic tubes

- Sound waves travel down acoustic tubes:

- 1-dimensional; very similar to strings
- Common situation:
- wind instrument bores
- ear canal
- vocal tract

Pressure and velocity

- Consider air particle displacement $\xi(x, t)$

- Particle velocity $v(x, t)=\frac{\partial \xi}{\partial t}$
- hence volume velocity $u(x, t)=\operatorname{Av}(x, t)$
- (Relative) air pressure $p(x, t)=-\frac{1}{\kappa} \frac{\partial \xi}{\partial x}$

Wave equation for a tube

- Consider elemental volume

Area $d A$
Force $p \cdot d A$

Volume $d A \cdot d x$
Force $(p+\partial p / \partial x \cdot d x) \cdot d A$
Mass $\rho \cdot d A \cdot d x$

- Newton's law: $F=m a$

$$
\begin{aligned}
-\frac{\partial p}{\partial x} d x d A & =\rho d A d x \frac{\partial v}{\partial t} \\
\Rightarrow \frac{\partial p}{\partial x} & =-\rho \frac{\partial v}{\partial t} \\
\therefore c^{2} \frac{\partial^{2} \xi}{\partial x^{2}} & =\frac{\partial^{2} \xi}{\partial t^{2}} \quad c=\frac{1}{\sqrt{\rho \kappa}}
\end{aligned}
$$

Acoustic tube traveling waves

- Traveling waves in particle displacement:

$$
\xi(x, t)=\xi^{+}(x-c t)+\xi^{-}(x+c t)
$$

- Call $u^{+}(\alpha)=-c A \frac{\partial}{\partial \alpha} \xi^{+}(\alpha), Z_{0}=\frac{\rho c}{A}$
- Then volume velocity:

$$
u(x, t)=A \frac{\partial \xi}{\partial t}=u^{+}(x-c t)-u^{-}(x+c t)
$$

- And pressure:

$$
p(x, t)=-\frac{1}{\kappa} \frac{\partial \xi}{\partial x}=Z_{0}\left[u^{+}(x-c t)+u^{-}(x+c t)\right]
$$

- (Scaled) sum and difference of traveling waves

Acoustic traveling waves (2)

Different resultants for pressure and volume velocity:

Terminations in tubes

- Equivalent of fixed point for tubes?

- Open end is like fixed point for rope: reflects wave back inverted
- Unlike fixed point, solid wall reflects traveling wave without inversion

Standing waves

- Consider (complex) sinusoidal input

$$
u_{0}(t)=U_{0} e^{j \omega t}
$$

- Pressure/volume must have form $K e^{j(\omega t+\phi)}$
- Hence traveling waves:

$$
\begin{aligned}
& u^{+}(x-c t)=|A| e^{j\left(-k x+\omega t+\phi_{A}\right)} \\
& u^{-}(x+c t)=|B| e^{j\left(k x+\omega t+\phi_{B}\right)}
\end{aligned}
$$

where $k=\omega / c$ (spatial frequency, $\mathrm{rad} / \mathrm{m}$)
(wavelength $\lambda=c / f=2 \pi c / \omega$)

- Pressure and volume velocity resultants show stationary pattern: standing waves
- even when $|A| \neq|B|$
\Rightarrow [simulation sintwavemov.m]

Standing waves (2)

- For lossless termination $\left(\left|u^{+}\right|=\left|u^{-}\right|\right)$, have true nodes and antinodes
- Pressure and volume velocity are phase shifted
- in space and in time

Transfer function

Consider tube excited by $u_{0}(t)=U_{0} e^{j \omega t}$

- sinusoidal traveling waves must satisfy termination 'boundary conditions'
- satisfied by complex constants A and B in

$$
\begin{aligned}
u(x, t) & =u^{+}(x-c t)+u^{-}(x+c t) \\
& =A e^{j(-k x+\omega t)}+B e^{j(k x+\omega t)} \\
& =e^{j \omega t}\left(A e^{-j k x}+B e^{j k x}\right)
\end{aligned}
$$

- standing wave pattern will scale with input magnitude
- point of excitation makes a big difference...

Transfer function (2)

For open-ended tube of length L excited at $x=0$ by $U_{0} e^{j \omega t}$

$$
u(x, t)=U_{0} e^{j \omega t} \frac{\cos k(L-x)}{\cos k L} \quad k=\frac{\omega}{c}
$$

- (matches at $x=0$, maximum at $x=L$)
i.e. standing wave pattern
- e.g. varying L for a given ω (and hence k):

- magnitude of U_{L} depends on $L($ and $\omega)$

Transfer function (3)

- Varying ω for a given L, i.e. at $x=L$

$$
\frac{U_{L}}{U_{0}}=\frac{u(L, t)}{u(0, t)}=\frac{1}{\cos k L}=\frac{1}{\cos (\omega L / c)}
$$

$$
\frac{\frac{u(L)}{u(0)}}{\left|\frac{\mid u(L)}{u(0)}\right| \rightarrow \infty} \text { at } \omega L / c=(2 r+1) \pi / 2, r=0,1,2 \ldots
$$

- Output volume velocity always larger than input
- Unbounded for $L=(2 r+1) \frac{\pi c}{2 \omega}=(2 r+1) \frac{\lambda}{4}$ i.e. resonance (amplitude grows without bound)

Resonant modes

For lossless tube with $L=m \frac{\lambda}{4}, m$ odd, λ wavelength $\left|\frac{u(L)}{u(0)}\right|$ is unbounded, meaning:

- transfer function has pole on frequency axis
- energy at that frequency sustains indefinitely

- compare to time domain ...
e.g. 17.5 cm vocal tract, $c=350 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \omega_{0}=2 \pi 500 \mathrm{~Hz}$ (then $1500,2500, \ldots$)

Scattering junctions

At abrupt change in area:

- pressure must be continuous

$$
\mathrm{p}_{\mathrm{k}}(\mathrm{x}, \mathrm{t})=\mathrm{p}_{\mathrm{k}+1}(\mathrm{x}, \mathrm{t})
$$

- vol. veloc. must be continuous

$$
u_{k}(x, t)=u_{k+1}(x, t)
$$

- traveling waves

$$
u_{k}^{+}, u_{k}^{-}, u_{k+1}^{+}, u_{k+1}^{-}
$$

will be different
Solve e.g. for u_{k}^{-}and u_{k+1}^{+}: (generalized term)

Concatenated tube model

Vocal tract acts as a waveguide

Discrete approximation as varying-diameter tube

Concatenated tube resonances

Concatenated tubes \rightarrow scattering junctions \rightarrow lattice filter

Can solve for transfer function - all-pole

Approximate vowel synthesis from resonances [sound example: ah ee oo]

Outline

(1) The wave equation
(2) Acoustic tubes: reflections \& resonance
(3) Oscillations \& musical acoustics
(4) Spherical waves \& room acoustics

Oscillations \& musical acoustics

Pitch (periodicity) is essence of music

- why? why music?

Different kinds of oscillators

- simple harmonic motion (tuning fork)
- relaxation oscillator (voice)
- string traveling wave (plucked/struck/bowed)
- air column (nonlinear energy element)

Simple harmonic motion

- Basic mechanical oscillation

$$
\ddot{x}=-\omega^{2} x \quad x=A \cos (\omega t+\phi)
$$

- Spring + mass (+ damper)

$$
\omega^{2}=\frac{k}{m}
$$

- e.g. tuning fork
- Not great for music
- fundamental $(\cos \omega t)$ only
- relatively low energy

Relaxation oscillator

- Multi-state process
- one state builds up potential (e.g. pressure)
- switch to second (release) state
- revert to first state, etc.
- e.g. vocal folds:

http://www. youtube.com/watch?v=ajbcJiYhFKY
- Oscillation period depends on force (tension)
- easy to change
- hard to keep stable
\Rightarrow less used in music

Ringing string

- e.g. our original 'rope' example

- Many musical instruments
- guitar (plucked)
- piano (struck)
- violin (bowed)
- Control period (pitch):
- change length (fretting)
- change tension (tuning piano)
- change mass (piano strings)
- Influence of excitation ... [pluck1a.m]

Wind tube

- Resonant tube + energy input

$$
\omega=\frac{\pi c}{2 L} \text { (quarter wavelength) }
$$

- e.g. clarinet
- lip pressure keeps reed closed
- reflected pressure wave opens reed
- reinforced pressure wave passes through
- finger holds determine first reflection
\Rightarrow effective waveguide length

Outline

(1) The wave equation

(2) Acoustic tubes: reflections \& resonance

(3) Oscillations \& musical acoustics

(4) Spherical waves \& room acoustics

Room acoustics

- Sound in free air expands spherically:

- Spherical wave equation:

$$
\frac{\partial^{2} p}{\partial r^{2}}+\frac{2}{r} \frac{\partial p}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}
$$

solved by $p(r, t)=\frac{P_{0}}{r} e^{j(\omega t-k r)}$

- Energy $\propto p^{2}$ falls as $\frac{1}{r^{2}}$

Effect of rooms (1): Images

Ideal reflections are like multiple sources:

'Early echoes' in room impulse response:
direct path

- actual reflections may be $h_{r}(t)$, not $\delta(t)$

Effect of rooms (2): Modes

Regularly-spaced echoes behave like acoustic tubes

Real rooms have lots of modes!

- dense, sustained echoes in impulse response
- complex pattern of peaks in frequency response

Reverberation

- Exponential decay of reflections:

- Frequency-dependent
- greater absorption at high frequencies
\Rightarrow faster decay
- Size-dependent
- larger rooms \rightarrow longer delays \rightarrow slower decay
- Sabine's equation:

$$
R T_{60}=\frac{0.049 \mathrm{~V}}{S \bar{\alpha}}
$$

- Time constant varies with size, absorption

Summary

- Traveling waves
- Acoustic tubes \& resonances
- Musical acoustics \& periodicity
- Room acoustics \& reverberation

Parting thought

- Musical bottles

References

