EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics

Dan Ellis & Mike Mandel

Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

January 29, 2009

- 1 The wave equation
- 2 Acoustic tubes: reflections & resonance
- Oscillations & musical acoustics
- Spherical waves & room acoustics

Outline

1 The wave equation

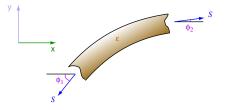
- 2 Acoustic tubes: reflections & resonance
- Oscillations & musical acoustics
- ④ Spherical waves & room acoustics

Acoustics & sound

- Acoustics is the study of physical waves
- (Acoustic) waves transmit energy without permanently displacing matter (*e.g.* ocean waves)
- Same math recurs in many domains
- Intuition: pulse going down a rope

The wave equation

Consider a small section of the rope



Displacement y(x), tension S, mass ϵdx \Rightarrow Lateral force is

$$F_{y} = S \sin(\phi_{2}) - S \sin(\phi_{1})$$
$$\approx S \frac{\partial^{2} y}{\partial x^{2}} dx$$

Wave equation (2)

Newton's law: F = ma

$$S\frac{\partial^2 y}{\partial x^2} \, dx = \epsilon \, dx \frac{\partial^2 y}{\partial t^2}$$

Call $c^2 = S/\epsilon$ (tension to mass-per-length) hence, the Wave Equation:

$$c^2 \frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial t^2}$$

... partial DE relating curvature and acceleration

Solution to the wave equation

If
$$y(x, t) = f(x - ct)$$
 (any $f(\cdot)$)
then

$$\frac{\partial y}{\partial x} = f'(x - ct) \qquad \qquad \frac{\partial y}{\partial t} = -cf'(x - ct)$$
$$\frac{\partial^2 y}{\partial x^2} = f''(x - ct) \qquad \qquad \frac{\partial^2 y}{\partial t^2} = c^2 f''(x - ct)$$

also works for y(x, t) = f(x + ct)Hence, general solution:

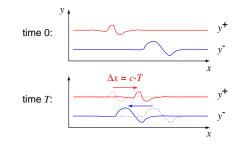
$$c^2 \frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial t^2}$$

$$\Rightarrow y(x,t) = y^+(x-ct) + y^-(x+ct)$$

Solution to the wave equation (2)

• $y^+(x - ct)$ and $y^-(x + ct)$ are traveling waves

shape stays constant but changes position



• c is traveling wave velocity $(\Delta x / \Delta t)$

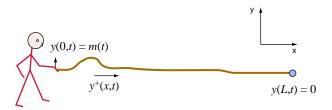
• resultant y(x) is sum of the two waves

Wave equation solutions (3)

- What is the form of y^+ , y^- ?
 - any doubly-differentiable function will satisfy wave equation
- Actual waveshapes dictated by boundary conditions

• e.g.
$$y(x)$$
 at $t = 0$

plus constraints on y at particular xs e.g. input motion y(0, t) = m(t) rigid termination y(L, t) = 0



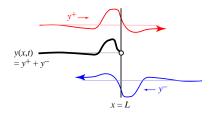
Terminations and reflections

• System constraints:

- initial y(x,0) = 0 (flat rope)
- input y(0,t) = m(t) (at agent's hand) ($\rightarrow y^+$)
- termination y(L, t) = 0 (fixed end)
- wave equation $y(x, t) = y^+(x ct) + y^-(x + ct)$
- At termination:

►
$$y(L, t) = 0 \Rightarrow y^+(L - ct) = -y^-(L + ct)$$

i.e. y^+ and y^- are mirrored in time and amplitude around x = L \Rightarrow inverted reflection at termination



[simulation travel1.m]

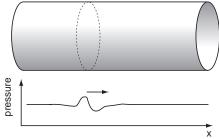
Outline

1 The wave equation

- 2 Acoustic tubes: reflections & resonance
- Oscillations & musical acoustics
- 4 Spherical waves & room acoustics

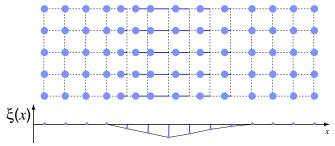
Acoustic tubes

• Sound waves travel down acoustic tubes:



- 1-dimensional; very similar to strings
- Common situation:
 - wind instrument bores
 - ear canal
 - vocal tract

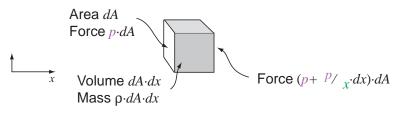
Pressure and velocity



- Particle velocity $v(x, t) = \frac{\partial \xi}{\partial t}$
- hence volume velocity u(x, t) = Av(x, t)
- (Relative) air pressure $p(x, t) = -\frac{1}{\kappa} \frac{\partial \xi}{\partial x}$

Wave equation for a tube

• Consider elemental volume



• Newton's law: F = ma

$$-\frac{\partial p}{\partial x} dx dA = \rho dA dx \frac{\partial v}{\partial t}$$
$$\Rightarrow \frac{\partial p}{\partial x} = -\rho \frac{\partial v}{\partial t}$$
$$\therefore c^2 \frac{\partial^2 \xi}{\partial x^2} = \frac{\partial^2 \xi}{\partial t^2} \qquad c = \frac{1}{\sqrt{\rho\kappa}}$$

Acoustic tube traveling waves

• Traveling waves in particle displacement:

$$\xi(x,t) = \xi^+(x-ct) + \xi^-(x+ct)$$

• Call
$$u^+(\alpha) = -cA \frac{\partial}{\partial \alpha} \xi^+(\alpha), \ Z_0 = \frac{\rho c}{A}$$

• Then volume velocity:

$$u(x,t) = A \frac{\partial \xi}{\partial t} = u^+(x-ct) - u^-(x+ct)$$

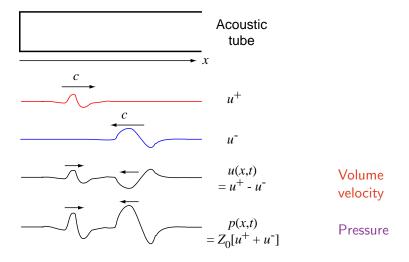
And pressure:

$$p(x,t) = -\frac{1}{\kappa} \frac{\partial \xi}{\partial x} = Z_0 \left[u^+(x-ct) + u^-(x+ct) \right]$$

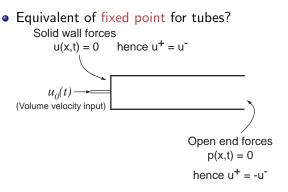
• (Scaled) sum and difference of traveling waves

Acoustic traveling waves (2)

Different resultants for pressure and volume velocity:



Terminations in tubes



- Open end is like fixed point for rope: reflects wave back inverted
- Unlike fixed point, solid wall reflects traveling wave without inversion

Standing waves

• Consider (complex) sinusoidal input

$$u_0(t) = U_0 e^{j\omega t}$$

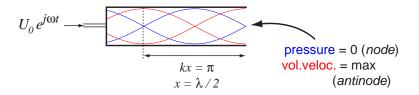
- Pressure/volume must have form $Ke^{j(\omega t+\phi)}$
- Hence traveling waves:

$$u^{+}(x - ct) = |A|e^{j(-kx+\omega t + \phi_A)}$$
$$u^{-}(x + ct) = |B|e^{j(kx+\omega t + \phi_B)}$$

where $k = \omega/c$ (spatial frequency, rad/m) (wavelength $\lambda = c/f = 2\pi c/\omega$)

- Pressure and volume velocity resultants show stationary pattern: standing waves
 - even when $|A| \neq |B|$
 - \Rightarrow [simulation sintwavemov.m]

Standing waves (2)



- For lossless termination (|u⁺| = |u⁻|), have true nodes and antinodes
- Pressure and volume velocity are phase shifted
 - in space and in time

Transfer function

Consider tube excited by $u_0(t) = U_0 e^{j\omega t}$

- sinusoidal traveling waves must satisfy termination 'boundary conditions'
- \bullet satisfied by complex constants A and B in

$$u(x,t) = u^{+}(x-ct) + u^{-}(x+ct)$$
$$= Ae^{j(-kx+\omega t)} + Be^{j(kx+\omega t)}$$
$$= e^{j\omega t}(Ae^{-jkx} + Be^{jkx})$$

- standing wave pattern will scale with input magnitude
- point of excitation makes a big difference ...

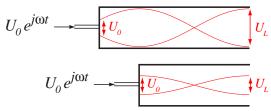
Transfer function (2)

For open-ended tube of length L excited at x = 0 by $U_0 e^{j\omega t}$

$$u(x,t) = U_0 e^{j\omega t} \frac{\cos k(L-x)}{\cos kL} \qquad k = \frac{\omega}{c}$$

• (matches at x = 0, maximum at x = L)

- i.e. standing wave pattern
 - *e.g.* varying L for a given ω (and hence k):



• magnitude of U_L depends on L (and ω)

Transfer function (3)

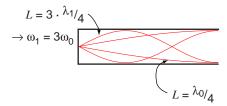
• Varying ω for a given L, *i.e.* at x = L

- Output volume velocity always larger than input
- Unbounded for $L = (2r+1)\frac{\pi c}{2\omega} = (2r+1)\frac{\lambda}{4}$
 - *i.e.* resonance (amplitude grows without bound)

Resonant modes

For lossless tube with $L = m\frac{\lambda}{4}$, *m* odd, λ wavelength $\left|\frac{u(L)}{u(0)}\right|$ is unbounded, meaning:

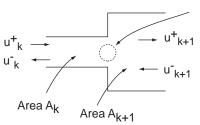
- transfer function has pole on frequency axis
- energy at that frequency sustains indefinitely



• compare to time domain ...

e.g. 17.5 cm vocal tract, c = 350 m/s $\Rightarrow \omega_0 = 2\pi 500$ Hz (then 1500, 2500, ...)

Scattering junctions

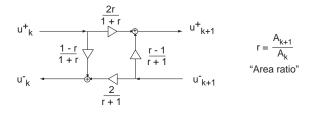


At abrupt change in area:

- pressure must be continuous $p_k(x, t) = p_{k+1}(x, t)$
- vol. veloc. must be continuous
 u_k(x, t) = u_{k+1}(x, t)
- traveling waves u⁺_k, u⁻_k, u⁺_{k+1}, u⁻_{k+1}

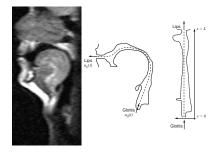
 will be different

Solve *e.g.* for u_k^- and u_{k+1}^+ : (generalized term)

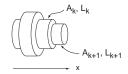


Concatenated tube model

Vocal tract acts as a waveguide

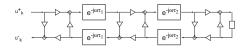


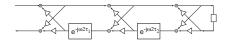
Discrete approximation as varying-diameter tube



Concatenated tube resonances

Concatenated tubes \rightarrow scattering junctions \rightarrow lattice filter





Can solve for transfer function – all-pole

Approximate vowel synthesis from resonances [sound example: ah ee oo]

E6820 SAPR (Ellis & Mandel)

Outline

The wave equation

2 Acoustic tubes: reflections & resonance

3 Oscillations & musical acoustics

4 Spherical waves & room acoustics

Oscillations & musical acoustics

Pitch (periodicity) is essence of music

• why? why music?

Different kinds of oscillators

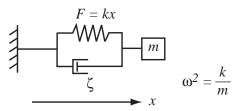
- simple harmonic motion (tuning fork)
- relaxation oscillator (voice)
- string traveling wave (plucked/struck/bowed)
- air column (nonlinear energy element)

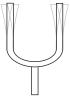
Simple harmonic motion

Basic mechanical oscillation

$$\ddot{x} = -\omega^2 x$$
 $x = A\cos(\omega t + \phi)$

• Spring + mass (+ damper)

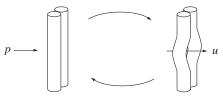




- e.g. tuning fork
- Not great for music
 - fundamental $(\cos \omega t)$ only
 - relatively low energy

Relaxation oscillator

- Multi-state process
 - one state builds up potential (e.g. pressure)
 - switch to second (release) state
 - revert to first state, etc.
- e.g. vocal folds:

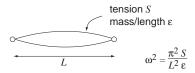


http://www.youtube.com/watch?v=ajbcJiYhFKY

- Oscillation period depends on force (tension)
 - easy to change
 - hard to keep stable
 - \Rightarrow less used in music

Ringing string

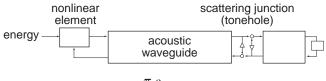
• e.g. our original 'rope' example



- Many musical instruments
 - guitar (plucked)
 - piano (struck)
 - violin (bowed)
- Control period (pitch):
 - change length (fretting)
 - change tension (tuning piano)
 - change mass (piano strings)
- Influence of excitation ... [pluck1a.m]

Wind tube

• Resonant tube + energy input



$$\omega = \frac{\pi c}{2 L}$$
 (quarter wavelength)

- e.g. clarinet
 - lip pressure keeps reed closed
 - reflected pressure wave opens reed
 - reinforced pressure wave passes through

(

- finger holds determine first reflection
 - \Rightarrow effective waveguide length

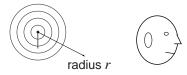
Outline

The wave equation

- 2 Acoustic tubes: reflections & resonance
- 3 Oscillations & musical acoustics
- 4 Spherical waves & room acoustics

Room acoustics

• Sound in free air expands spherically:



• Spherical wave equation:

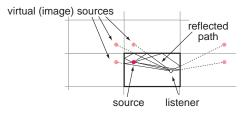
$$\frac{\partial^2 p}{\partial r^2} + \frac{2}{r} \frac{\partial p}{\partial r} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

solved by $p(r, t) = \frac{P_0}{r} e^{j(\omega t - kr)}$
Energy $\propto p^2$ falls as $\frac{1}{r^2}$

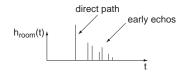
٠

Effect of rooms (1): Images

Ideal reflections are like multiple sources:



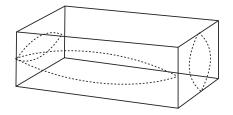
'Early echoes' in room impulse response:



• actual reflections may be $h_r(t)$, not $\delta(t)$

Effect of rooms (2): Modes

Regularly-spaced echoes behave like acoustic tubes

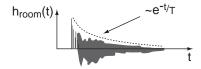


Real rooms have lots of modes!

- dense, sustained echoes in impulse response
- complex pattern of peaks in frequency response

Reverberation

• Exponential decay of reflections:



- Frequency-dependent
 - greater absorption at high frequencies
 - \Rightarrow faster decay
- Size-dependent
 - ▶ larger rooms \rightarrow longer delays \rightarrow slower decay
- Sabine's equation:

$$RT_{60} = \frac{0.049V}{S\bar{\alpha}}$$

• Time constant varies with size, absorption

Summary

- Traveling waves
- Acoustic tubes & resonances
- Musical acoustics & periodicity
- Room acoustics & reverberation

Parting thought

Musical bottles

References