Python in MIR

LibROSA + mir_eval

Brian McFee HAMR.2014

Python in MIR... why?

- Better coding practices, reproducible research
- Critical mass of...
 - existing modules and API support
 - developer ecosystem
- Integration with modern tools
 - o numpy, scipy
 - IPython (+notebook)
 - scikit-learn
 - o theano

Python in MIR... why not before?

Entrenched legacy MATLAB code

(previously) Lack of DSP/MIR tools in Python

- Wrappers exist (Marsyas, YAAFE, ...)
 - o but these can be unwieldy, difficult to modify

Librosa

https://github.com/bmcfee/librosa

- 100% Python
 - Minimal dependencies
 - Thoroughly documented
 - Strict unit tests on core functions
 - Easy to read and modify
- Easy to use
- Easy to install via PyPI:
 - o \$ pip install librosa

librosa 0.1.0 (June 2013, HAMR)

- Basic audio processing (IO, STFT)
- Feature extraction
- Rhythm analysis
- Harmonic-percussive source separation

librosa 0.2.0 (December 2013)

- New modules:
 - o display: visualization
 - segment: structural segmentation
 - onset: onset detection
- Additional features
 - cqt, pseudo-cqt, utility functions, code refactoring...
 - examples and demo code
 - The list goes on, see <u>CHANGELOG</u>
- Improved documentation

librosa 0.2.1 (January 2014, NEMISIG)

- Efficiency improvements and bug fixes
- Parameter optimization
- Improved annotation export
- Improved evaluation interoperability

Open evaluation

What if I want to run my own MIREX?

MIR evaluations are notoriously difficult

MIREX evaluation code is complex, huge dependency chain

mir_eval

https://github.com/craffel/mir eval

- A python implementation of MIR evaluations
 - beat tracking [Beat Evaluation Toolbox]
 - onset detection [Böck's onset evaluator]
 - segmentation
 - chord recognition [Harte/McVicar]
 - blind source separation [BSS_Eval]
- And helpers...
 - data processing, alignment, chord reduction, ...

mir_eval v0.0.1 coming soon

- Pure python
- Fully documented
- Minimal dependency chain
- Easy to use
- Unit tests for numerical equivalence to MIREX

DEMO