# Bayesian Hierarchical <br> Modeling for Music and Audio Processing at LabROSA <br> Dawen Liang (LabROSA) 

Joint work with: Dan Ellis (LabROSA), Matt Hoffman
(Adobe Research), Gautham Mysore (Adobe Research)

1. Bayesian Hierarchical Modeling in general
2. Beta Process Sparse NMF
3. Product-of-Filters (PoF)

## Bayesian Hierarchical Modeling in general



Unigram


Latent Dirichlet Allocation

- Bayesian model with hierarchy
- Bayesian model: interested in posterior $p(\Theta \mid X)$
- Hierarchy: Latent variable layer(s)


## NMF for Source Separation

 (Lee \& Seung, 2001; Smaragdis \& Brown 2003) $X_{(F \times T)} \quad \approx \quad D_{(F \times K)} \quad S_{(K \times T)}$
$D_{\text {fk: }}$ amplitude at freq f for source k Skt: gain of source $k$ at time t


## Limitations of NMF

- It's not clear how to choose K, the number of components.
- The decomposition doesn't express the intuition that most components should be silent most of the time.


## Beta Process Sparse NMF

- We propose Beta Process Sparse NMF (BP-NMF), a Bayesian nonparametric sparse NMF model.
- Bayesian nonparametric: puts a prior on how many components will be used to explain the data.
- Sparse: explicitly silences most components most of the time.


## BP-NMF Decomposition

$X_{(F \times T)}$
$\approx$
$\mathrm{D}_{\text {(F×K) }}\left(\mathrm{Z}_{(\mathrm{K} \times \mathrm{T})}\right.$
$\bigcirc$
$\left.S_{(K \times T)}\right)$


Dik: amplitude at freq f for source k Skt: gain of source $k$ at time t
$Z_{k t}$ binary mask on source $k$ at time $t$
$X_{\mathrm{ft}}$ : observed amplitude at time t , freq f

## The BP-NMF Model

$$
\begin{gathered}
\pi_{k} \sim \operatorname{Beta}\left(a_{0} / K, b_{0}(K-1) / K\right) \\
\mathrm{Z}_{k t} \sim \operatorname{Bernoulli}\left(\pi_{k}\right)
\end{gathered}
$$

- Each source k has some probability $\pi_{k}$ of being on at each time t.

As K gets large, the expected number of elements of $\pi$ that
 are significantly greater than 0 stays constant.
$X_{(F \times T)} \approx D_{(F \times K)}\left(Z_{(K \times T)} \odot \quad S_{(K \times T)}\right)$

$\log \left(\mathrm{D}_{f k}\right) \sim \operatorname{Normal}(0,1)$
$\mathrm{S}_{k t} \sim \operatorname{Gamma}(\alpha, \beta)$
$\mathrm{X}_{f t} \sim \operatorname{Normal}\left(\sum_{k} \mathrm{D}_{f k} \mathrm{Z}_{k t} \mathrm{~S}_{k t}, \gamma^{-1}\right) \quad \gamma \sim \operatorname{Gamma}\left(c_{0}, d_{0}\right)$

- Priors on S, D, and $\gamma$ are chosen to preserve nonnegativity, and for mathematical convenience.


## Inference

- The posterior is intractable, and the priors aren't conjugate.
- We use Laplace approximation variational inference (Wang \& Blei, 2013) to approximate the posterior over the model parameters.
- Source code available (in Python!) at: https://github.com/ dawenl/bp nmf


## Synthetic Data Experiment

- We ran BP-NMF on a synthetic recording of piano and clarinet.
- One note from each instrument active at any given time.


Learned Dictionary D


Inferred Activations SoZ

## Source Separation Experiment

- MIREX Fo estimation data-woodwind quintet recording (bassoon, clarinet, flute, horn, oboe).
- We measure average BSS_eval metrics across each separated source, compare to GaP-NMF (Hoffman et al., 2010), another Bayesian nonparametric NMF model.
- BP-NMF discovers more components than GaP-NMF, which may be due to its ability to impose sparsity on the activations.

|  | SDR | SIR | SAR | K |
| :---: | :---: | :---: | :---: | :---: |
| BP-NMF | 0.65 | 7.46 | 4.81 | 46 |
| GaP-NMF | -1.86 | 3.89 | 6.12 | 31 |

## Product-of-Filters (PoF)

- Difference between NMF and PoF:
- NMF decomposes polyphonic sounds into individual sources.
- PoF decomposes monophonic sounds into simpler "systems" via statistical inference.


## Motivation of PoF

- Homomorphic filtering:
- A short window of audio is modeled as a convolution between an excitation signal and the impulse response of a series of linear filters.
- Likewise we model the observed magnitude spectra as a product of filters.

$\mathrm{U}_{\mathrm{fl}}$ : amplitude on filter I at freq f
Alt: activation on filter I at time t (non-negative) Wft: observed amplitude at time t, freq f

$$
\log W_{(F \times T)} \approx U_{(F \times L)} A_{(L \times T)}
$$



$$
\begin{gathered}
a_{l t} \sim \operatorname{Gamma}\left(\alpha_{l}, \alpha_{l}\right) \\
W_{f t} \sim \operatorname{Gamma}\left(\gamma_{f}, \gamma_{f} / \exp \left(\sum_{l} U_{f l} a_{l t}\right)\right)
\end{gathered}
$$

- Priors on $\mathbf{A}$ imposes sparsity, reflected by $\alpha$, encoding the intuition that not all filters are always active.
- A is obtained via variational inference. $\mathbf{U}, \gamma$, and $\alpha$ are learned via maximum marginal likelihood.


## Filters Discovered from TIMIT



## Experimental Results

- More details in the poster session
- Bandwidth expansion
- Speaker identification (v.s. MFCC)
- (in progress) Phoneme classification with DNN


## Wrapping up

- We briefly introduced Bayesian hierarchical modeling and two specific models for music and audio processing:
- BP-NMF, a Bayesian nonparametric extension of the regular NMF model.
- PoF, a novel model which decomposes monophonic sounds into simpler "systems" via statistical inference.


## Questions?

