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Content-Based MIR
Chord Recognition

Deep Feature Learning

Rhythmic Similarity

Melody Extraction

Pattern Discovery & Segmentation
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Chord Recognition

Table 1

Average accuracy without filtering

BT G1 G5 G25

C 46.95 46.46 46.26 48.77

CW
52.12 49.40 47.38 51.71

C
Log

45.18 48.24 50.44 49.35

CW
Log

55.51 58.30 57.58 57.69

Table 2

Average accuracy without filtering

BT G1 G5 G10 G15 G20 G25 max-min

C 46.95 46.46 46.26 48.10 48.39 48.74 48.77 2.51

CW
52.12 49.40 47.38 50.24 51.04 51.42 51.71 4.73

CN
54.38 54.51 50.49 50.90 51.42 52.14 51.97 4.02

C
Log

45.18 48.24 50.44 49.34 49.36 49.06 49.35 5.26

C
CRP

44.37 40.12 39.80 39.61 40.49 40.87 40.86 4.76

CW
Log

55.51 58.30 57.58 57.73 57.72 57.70 57.69 2.79

CW
CRP

53.24 53.83 54.66 54.67 54.00 54.03 53.55 1.43

CN
Log

55.00 56.29 53.09 53.24 53.28 53.33 53.43 3.20

max-min 11.14 18.18 17.78 18.12 17.23 16.83 16.83

Table 3

The best results of di↵erent features for each experiment.

C CW C
Log

CW
Log

filter BT G1 G25 BT G1 G25 BT G1 G25 BT G1 G25

No-filtering N/A 47.0 46.5 48.8 52.1 49.4 51.7 45.2 48.2 49.4 55.5 58.3 57.7

Pre-filtering

avg / med-filters 62.3 62.3 64.8 66.8 64.7 65.9 56.8 60.5 62.5 69.3 71.2 70.9

Beat-synchrnization 47.3 53.5 56.2 59.5 59.7 62.2 51.8 55.2 60.5 65.6 69.0 68.0

Beat-sync + avg/mid filt 51.2 58.2 59.7 63.7 64.6 65.8 53.5 58.7 63.5 68.9 72.5 71.1

Post-filtering Viterbi 66.4 64.3 72.2 70.9 67.1 74.8 59.6 62.6 66.6 73.0 75.8 77.9

Pre & Post

avg-filter + Viterbi 66.7 66.1 72.0 71.1 68.7 74.6 59.7 64.1 69.9 73.1 75.6 77.6

Beat-sync + Viterbi 64.4 61.5 67.5 67.9 67.9 73.4 53.7 60.4 69.4 72.7 76.7 77.5

C CW CW
Log

filter BT G1 G25 BT G1 G25 BT G1 G25

N/A 47.0 46.5 48.8 52.1 49.4 51.7 55.5 58.3 57.7

avg / med-filter + Viterbi 66.7 66.1 72.0 71.1 68.7 74.6 73.1 75.6 77.6

Beat-sync + Viterbi 64.4 61.5 67.5 67.9 67.9 73.4 72.7 76.7 77.5

• Feature variations have a considerable impact (~10%)

[Cho, T. // Bello, J.P.] http://marl.smusic.nyu.edu
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Chord Recognition
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TABLE II
AVERAGE ACCURACY WITH POST-FILTERING

(a) AU (b) AF

BT G1 G5 G10 G25 BT G1 G5 G10 G25

C 66.0 (2.1)⇤ 63.7 (14) 69.1 (17) 71.0 (17) 71.8 (16) 66.4 (-3.1) 64.3 (8) 69.6 (11) 71.5 (11) 72.2 (10)
CW 70.6 (2.4) 66.6 (15) 71.1 (20) 73.1 (19) 74.4 (16) 70.9 (-3.0) 67.1 (8) 71.5 (13) 73.6 (12) 74.8 (10)
CN 68.7 (4.7) 68.6 (18) 70.4 (21) 71.9 (19) 72.8 (20) 69.1 (-0.9) 68.9 (13) 70.7 (16) 72.7 (14) 73.1 (14)
CLog 59.6 (0.2) 61.9 (7) 69.0 (10) 66.4 (8) 65.9 (7) 55.7 (-4.4) 62.6 (1) 69.5 (3) 67.1 (1) 66.6 (0)
CW

Log 73.0 (0.4) 75.4 (10) 77.3 (13) 77.4 (12) 77.5 (11) 66.2 (-4.3) 75.8 (4) 77.6 (7) 77.8 (6) 77.9 (4)
CN

Log 70.1 (4.1) 72.4 (16) 72.6 (18) 73.1 (18) 73.5 (18) 70.8 (-2.1) 72.7 (11) 72.9 (11) 73.4 (11) 73.8 (12)

⇤The optimal penalty value ⇢ for each result is given in parentheses.
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(b) Moving Median Filter

Fig. 12. Average chord detection accuracy as a function of pre-filter order
L in the case of beat-synchronous CW

Log. The value at L = 1 shows the result
from beat-synchronization without any additional filtering.

and G1 (see Fig. 12 at L = 1). However, the effects of beat-
synchronization are inferior to the effects of pre-filtering using
the moving average or moving median filters, which show
maximum 71.22 % and 71.10 % accuracy respectively.

In fact, most existing beat-tracking algorithms, including the
algorithm used in this experiment, tend to overestimate the
actual beat-rate by a factor of 2 or 3. Because of the resulting
over-segmentation, the number of frames in each beat segment
is relatively small and inadequate to cope with the transient
noise in a signal. Thus, additional smoothing process using
moving average or median filters can increase the performance.
The results are shown in Fig. 12. As shown in this figure,
the additional smoothing process improves performance to
levels comparable or superior to the results in Fig. 11. In this
experiment, the optimal L values are all the same at L = 3

regardless of the different types of features and the different
model complexities. Considering the shapes of the accuracy
versus L curves in both Fig. 11 and Fig. 12, the optimal L

value seems to relate to the frame rate, rather than to the
feature type or model complexity.

C. Expt 3: Effect of post-filtering
The results of post-filtering with their optimal ⇢ values

are summarized in Table II. Overall, post-filtering shows a
significant improvement over the results in Table I, especially
in the case of stochastic chord models. Surprisingly, when
compared with the result of AU, the musical context infor-
mation from AF only improves the accuracy marginally. The
largest improvement is only about 0.8 %, and in the cases of
BT with CLog and C

W
Log, AF adversely influences the accuracy.

Unlike pre-filtering, for a given feature set except CLog,
performance of a stochastic chord model consistently improves
with increasing the number of Gaussian components, and
the maximum accuracy is achieved by the most complex
chord model. In the case of pre-filtering, the classification
performance is entirely dependent on decision boundaries
formed between chord models. As we already mentioned,
a higher model complexity does not ensure better decision
boundaries, thus the results of pre-filtering did not show any
explicit trends with changes in model complexity. However,
post-filtering is performed based on the probability values
from different models. Thus, the performance of post-filtering
is highly related to the quality of probability estimates rather
than the decision boundaries of the models. In most cases,
chord models with higher complexity better represent their
corresponding chord distributions, and thus this results in
improved performance with post-filtering as shown in Table II.
In the exceptional case of CLog, due to its overemphasized
overtones and noise, additional Gaussians would be used
in describing the overtones and noise. Since the overtones
produce confusion with other chords, and noise are shared
by all chord samples, the results from complex models can be
worse than simpler chord models.

The optimal penalty values vary widely depending on
different types of features and model complexities. Fig. 13
shows the effect of penalty on different combinations of
the chord models, features and transition matrices. These
combinations are labeled S1 through S6 for convenience. In
this figure, the plots of BT (see S1 and S2) have very steep
curves and peak at smaller settings than other stochastic chord
models. In other words, these systems are overly sensitive
to the transition penalty. When using BT , the likelihoods
of each chord class tend to be very close together, such
that the likelihoods are easily overwhelmed by the transition
probability depending on ⇢. In the case of using AF, the high
self-transition probabilities presented in the transition matrix
already exceed the discriminating power of BT . Therefore, the
effect of these self-transition probabilities needs to be lowered
to maximize performance. This is presented as the peak at the
negative value ⇢ = �4.3 in Fig. 13 (see S2). For this reason,
the optimal ⇢ values in the BT column of Table II(b) are
all negative. In addition, in the case of CLog and C

W
Log in this

column, the large negative penalties overemphasize the off-
diagonal transition probabilities in AF, leading to deteriorated

[Cho, T. // Bello, J.P.] http://marl.smusic.nyu.edu
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Chord Recognition
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• Complexity of models has a modest impact (~5%) 

0

1

C D E F# G# A#

Binary Template (BT) Single Gaussian (G1) Mixtures of Gaussians (GN) Networks of HMMs

[Cho, T. // Bello, J.P.] http://marl.smusic.nyu.edu
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Large Vocabulary Chord Recognition

• Chroma may be insufficient to discriminate complex chord types:


• Subband (K) chroma features


• K-stream Hidden Markov Model

Subband Chroma K-Stream HMM

[Cho, T. // Bello, J.P.] http://marl.smusic.nyu.edu
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Large Vocabulary Chord Recognition

• Performance is much lower than in the classic MIREX formulation (24M/m+N)

[Cho, T. // Bello, J.P.] http://marl.smusic.nyu.edu
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Large Vocabulary Chord Recognition

• Different metrics tell different stories

• Framewise Recognition Rate (FWRR)


• Average Chord Quality Accuracy (ACQA)

>100X more Major than minor6!

[Cho, T. // Bello, J.P.] http://marl.smusic.nyu.edu
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• Cascade of multiple layers, composed of a few simple operations

• Linear algebra

• Point-wise nonlinearities

• Pooling

!
!

• Learning leverages numerical methods to find good parameters.

Layer 2

Pointwise
Non-linearity Pooling

Layer N OutputInput

Matrix 
Operation

Layer 1

Deep Learning - A Slightly Different Approach to Design

[Humphrey, E.J. // Bello, J.P.] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


• The pieces of deep learning are everywhere in feature design:

!
!
!
!
!

• What makes feature design so challenging?

• You have to know what you want

• You have to know how to do it

Deep Learning - A Slightly Different Approach to Design

Affine 
Transformation

Mel-scale 
Filterbank

Non-linearity

Log-Scaling

Affine 
Transformation

DCT

Features

MFCC

Short-time
WindowingAudio Signal

≈ 50ms

Affine 
Transformation

Constant-Q 
Filterbank

Non-linearity

Modulus /
Log-Scaling

Affine 
Transformation

Octave 
Equivalnce

Features

Chroma

Short-time
WindowingAudio Signal

≈ 800ms

functionaudio chroma

[Humphrey, E.J. // Bello, J.P.] http://marl.smusic.nyu.edu
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• Defined versus Learned Features

!
!
!
!
!
!
!

• NB: Tutorial for this is on the MARL website

• Full Python code + data

• Could be fun for HAMR time!

Learning Chroma Features

CQT-to-Chroma Weights Chroma Features

[Humphrey, E.J. // Bello, J.P.] http://marl.smusic.nyu.edu
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• Can we use chord annotations to directly learn guitar tablature from audio?

Learning Human-Readable Representations

Convolutional
Layers

Affine
Layer

6D-Softmax
Layer

RBF Layer
(Templates)

MSEConstant-Q
TFR

[Humphrey, E.J. // Bello, J.P.] http://marl.smusic.nyu.edu
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• Trades slight drop in performance 
for some notable benefits:

• representations are directly interpretable by 

guitarists


• facilitates large-scale data collection / error 
correction


• reduces the degree of time / effort necessary 
to provide ground truth annotations


• can generalize to never-before seen chords

Learning Human-Readable Representations

FWRR ACQA

UC 58.72 62.02

G 58.26 61.36

Ideal Representation Network Output

E♭:hdim7

A:7

A:maj

[Humphrey, E.J. // Bello, J.P.] http://marl.smusic.nyu.edu

✓

✗
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• Leverage feature learning to optimize onset patterns

From Genre Classification to Rhythmic Similarity

Intermediate 
Layers

Posterior

[Esparza, T. // Bello, J.P. // Humphrey, E.J.] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


• Approach demonstrates sensitivity to certain rhythmic nuances

• Tempo dependence shows no significant effect

• Fine-grained changes (swung rhythms) affect classification accuracy

From Genre Classification to Rhythmic Similarity

[Esparza, T. // Bello, J.P. // Humphrey, E.J.] http://marl.smusic.nyu.edu
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• Nuances of the Latin Music Dataset 
undermine rhythmic similarity evaluation

• Annotation: Use trumps content

• Selection: Brazilian bias skews discrimination

• Unintended correlations: Tango exhibits unique 

signal-level qualities (bandwidth)


• Genre is a poor proxy for rhythmic similarity

• Sertaneja is better defined by lyrical themes

• Global pop influence flattens rhythm content

From Genre Classification to Rhythmic Similarity

[Esparza, T. // Bello, J.P. // Humphrey, E.J.] http://marl.smusic.nyu.edu
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• We’re curating a dataset!

• Goals:


• A few hundred full-length pieces

• Annotations:


• Predominant f0

• Time-aligned Instruments / Sources

• Genre


• Developing tools for monophonic f0 annotation (collaboration w/C4DM)

• Targeting a May / ISMIR release

• Let us know if you’d like to help!

Melody Extraction from Polyphonic Audio

[Bittner, R. // Salamon, J. // Bello, J.P.] http://marl.smusic.nyu.edu
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• Motives are short melodic/harmonic ideas 
that occur at least twice in a piece


• Idea: Use tools from music segmentation to 
discover these patterns


• Approach:

• key-invariant self-similarity matrix (SSM)

• novel path finding algorithm


• Works both on symbolic and audio 
representations


• Best MIREX results using audio as input

• (Also worst results :-D)

Pattern Discovery via Segmentation Methods

[Nieto, O. // Farbood, M.] http://marl.smusic.nyu.edu
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• Goal: Explore the relevance of the Precision and Recall values when 
evaluating the boundaries of music segmentation algorithms


• Method: Three experiments where subjects rate the quality of various 
boundaries.


• Take-aways:

• Precision is more perceptually relevant than Recall

• Proposed an Fα measure instead of F1 score (with α < 1)

Perceptually-Based Evaluation of Music Boundaries

[Nieto, O. // Jehan, T. // Farbood, M. // Bello, J.P.] http://marl.smusic.nyu.edu
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Non-Music Audio 
Research

Extreme Vocal Effects

Citygram One

Acoustic Ecology



• Automatic classification of EVEs

• EVE Types:


• Growl

• Fry Scream 

• Roughness


• Features:

• MFCC

• Spectral Contrast

• Zero Crossings in TD

• Loudness (RMS)

• K-means

Extreme Vocal Effects

[Nieto, O.] http://marl.smusic.nyu.edu
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• Mapping non-ocular spatio-acoustic energy

• Dynamic, quasi-real-time sound maps

• Publicly accessible and as open as possible

• Exploration portal for the public, artists, policy-

makers, and researchers


• Soundmaps are valuable, but non-existent

• Invisible energies such as sound underrepresented

• Accurately quantify and measure “noise pollution”

• Richer representation of urban landscapes

Citygram One - Mapping Acoustic Ecology

[Jacoby, C. // Salamon, J. // Park, T.H. (PI)] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


• Goal: Create and deploy a cyber-physical system

• Acquisition – build/deploy remote sensor network

• Analysis – content-based + context-based

• Visualization – map overlays, multiple features

• Citizen science – sound recording / annotation

Citygram One - Mapping Acoustic Ecology

[Jacoby, C. // Salamon, J. // Park, T.H. (PI)] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


• Phase I: Source ID (siren, jackhammer, gunshot…)

• Curate dataset (annotated urban sound collections are scarce!)

• Train/test ML algorithms for source ID


• Phase 2: Content + Context

• Explore relation with other sources of city data (311 noise complaints, 

crime stats, etc.)

Urban Auditory Scene Analysis

[Salamon, J. c/o CUSP] http://marl.smusic.nyu.edu

NYC$311$Noise$Complains$(20103current)$

Loud%Music/Party%

Loud%Talking%

Noise:%Construc9on%Before/A=er%
Hours%(NM1)%

Car/Truck%Music%

Noise,%Barking%Dog%(NR5)%

Noise:%Construc9on%Equipment%(NC1)%

People%Created%Noise%

Engine%Idling%

Noise:%Jack%Hammering%(NC2)%

http://marl.smusic.nyu.edu


Acoustic Ecology

[Humphrey, E.J. // Cheung, B. (UC-Berkeley)] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


Computer Music 
Systems

Automatic Accompaniment

AirJam

Audio Continuators

Interactive Performance



• Goal: Given a melody, automatically generate accompaniment

• Applications:


• Automated composition tools

• Automated real-time accompaniment

• Algorithmic composition


• Given a melody note sequence find the most likely sequence of chords:

!
!
!
!

• Model Pr[c|m] and Pr[c] using separate finite state machines, which can then 
be combined

Automatic Musical Accompaniment

[Forsyth, J.] http://marl.smusic.nyu.edu

c: chord sequence 
m: melody sequence 
Σ*: set of all possible melody sequences 

$SSURDFK
Ɣ *LYHQ�D�PHORG\�QRWH�VHTXHQFH�ILQG�WKH�PRVW�OLNHO\�

VHTXHQFH�RI�FKRUGV�

Ɣ 0RGHO�3U>F_P@�DQG�3U>F@�XVLQJ�VHSDUDWH�ILQLWH�VWDWH�
PDFKLQHV��ZKLFK�FDQ�WKHQ�EH�FRPELQHG

F��FKRUG�VHTXHQFH
P��PHORG\�VHTXHQFH
ƶ
��VHW�RI�DOO�SRVVLEOH�PHORG\�VHTXHQFHV�

http://marl.smusic.nyu.edu


• Methodology:

• train on Bach four-voice chorales (MIDI)

• use different n-gram orders, chord quantization strategies, key normalization

• evaluate using cross-fold validation

• compute accuracy, average Euclidean distance between ground truth and generated 

sequences

• key normalization, n-gram order improve performance

Automatic Musical Accompaniment

[Forsyth, J.] http://marl.smusic.nyu.edu

)LQLWH�6WDWH�7UDQVGXFHUV
PRGHO�3U>F@�XVLQJ�Q�JUDP
PRGHO�3U>P_F@�XVLQJ�RQH�VWDWH�)67�

model Pr[c] using n-gram 
model Pr[m|c] using one-state FST

http://marl.smusic.nyu.edu


• Extending this approach with a speech recognition framework:

• melody notes —> “phonemes”, chords —> “words”

• FST maps sequences of notes (melody) to chords


!
!
!
!

• Method:

• Trained chord model and chord-melody map using the Rock Corpus Dataset (de Clerc, 

Temperly at U Rochester) 

• Models built using openFST and openGRM-ngram

Automatic Musical Accompaniment

[Bittner, R. // Forsyth, J.] http://marl.smusic.nyu.edu

,PSURYLQJ�WKH�V\VWHP
Ɣ 8VH�VSHHFK�UHFRJQLWLRQ�IUDPHZRUN

ż PHORG\�QRWHV� �³SKRQHPHV´
ż FKRUGV� �³ZRUGV´

Ɣ 8VH�)67�WR�PDS�VHTXHQFHV�RI�PHORG\�QRWHV�WR�FKRUGV�

http://marl.smusic.nyu.edu


• Builds upon and extends previous work with 
Continuators (Pachet, Marchini, Kosta)

• Improved clustering methods

• Phrase segmentation

• Introduces interaction paradigm


• Developed objective evaluation metrics of 
recurrence and novelty for the system’s output


• Python Continuator implementation found at 
http://github.com/amlal/vlmc

Audio Continuators

[Lal, A. // Bello, J.P.] http://marl.smusic.nyu.edu

http://github.com/amlal/vlmc
http://marl.smusic.nyu.edu


• Once trained, the interaction paradigm operates in a feed-forward manner:

Audio Continuators

[Lal, A. // Bello, J.P.] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


Audio Continuators

[Lal, A. // Bello, J.P.] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


• Real-time computer vision on mobile devices using built-in front camera

• Convex-hull + heuristics to detect gestures

• AirJam published on the AppStore for iPad!

AirJam - Pose Recognition for Instrument Control

[Nieto, O. // Shasha, D.] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


AirJam

[Nieto, O. // Shasha, D.] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


• Objective: develop systems for

• live-performance (e.g. concert), with musicians who improvise with the system

• gallery installations, where participants are free to explore / play the system


• Emphasizes:

• Composition of a set of interactions, not a single state (i.e., a score)

• The system interface is sonic, rather than physical or tactile controllers


• Use feature extraction and classification to expand the range of interaction

• Composer maps detected events to musical responses

• Feature design embodies a creative element (what sonic behaviors are encoded?)

Interactive Performance Systems

[Musick, M.] http://marl.smusic.nyu.edu

http://marl.smusic.nyu.edu


Interactive Performance Systems

[Musick, M.] http://marl.smusic.nyu.edu
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Interactive Performance Systems

[Musick, M.] http://marl.smusic.nyu.edu
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Thanks! // Questions?


