Music Informatics @ NYU

Music and Audio Research Laboratory (MARL) New York University

Eric J. Humphrey 25 January, 2014

MARL: founded in late 2008, moved to new facilities in 2009 14+ researchers, Funded by NSF, IMLS, NYU

http://marl.smusic.nyu.edu

MARL: Areas of Interest

Immersive Audio (A. Roginska)

Music Cognition (M. Farbood and P. Mavromatis)

Computer Music (T.H. Park and R. Rowe)

Music Informatics (J.P. Bello)

http://marl.smusic.nyu.edu

MARL – PhDs and Post-Doc*

Content-Based MIR

Chord Recognition Deep Feature Learning Rhythmic Similarity Melody Extraction Pattern Discovery & Segmentation

Chord Recognition

Feature variations have a considerable impact (~10%)

[Cho, T. // Bello, J.P.]

http://marl.smusic.nyu.edu

Chord Recognition

• Feature filtering has a huge impact (~20%)

[Cho, T. // Bello, J.P.]

http://marl.smusic.nyu.edu

Chord Recognition

• Complexity of models has a modest impact (~5%)

		C		_		C^W		_		$C^W_{ m Log}$	
filter	BT	G1	G25		BT	G1	G25		BT	G1	G25
N/A	47.0	46.5	48.8	-	52.1	49.4	51.7	-	55.5	58.3	57.7
avg / med-filter + Viterbi Beat-sync + Viterbi	66.7 64.4	66-1 61.5	72.0 67.5	-	$71.1 \\ 67.9$	$68.7 \\ 67.9$	74.6 73.4	-	73.1 72.7	75.6 76.7	77.6 77.5

Large Vocabulary Chord Recognition

- Chroma may be insufficient to discriminate complex chord types:
 - Subband (K) chroma features
 - K-stream Hidden Markov Model

 q_{l-2} q_{l-1} q_{l} q_{l+1}

K-Stream HMM

Subband Chroma

http://marl.smusic.nyu.edu

 q_{t+2}

Large Vocabulary Chord Recognition

• Performance is much lower than in the classic MIREX formulation (24M/m+N)

		-	-							
		Lexic	on 1	Lexicon 2						
	Recognition rate Avr. ind. chord		d. chord	Recognition rate		Avr. ind. chord				
K	C _K	K-stream	C _K	K-stream	C _K	K-stream	C _K	K-stream		
1	6	0.78	63.31		5	57.50		1.83		
4	62.11	63.72	63.75	65.59	60.97	62.65	39.46	43.75		

(a) Frame-based features with G5 and $A_{\rm F}$

(b) Beat-synchronous features with G5 and $A_{\rm B}$

	Lexicon 1				Lexicon 2					
	Recognition rate		Avr. ind. chord		Recog	nition rate	Avr. in	Avr. ind. chord		
K	C _K	K-stream	C _K	K-stream	C _K	K-stream	C _K	K-stream		
1	62.14 62.29		60.21		39.95					
4	63.69	65.30	61.74	63.87	62.85	65.24	35.58	39.19		

Large Vocabulary Chord Recognition

- Different metrics tell different stories
 - Framewise Recognition Rate (FWRR)
 - Average Chord Quality Accuracy (ACQA)

	(a) Frame-based features							
	maj	min	min7	7	Ν	maj7		
	511848	138845	75927	70894	41223	32458		
sus4	maj6	min6	sus2	dim	aug	hdim7	dim7	
13909	10832	4826	4653	3214	2863	1715	1432	

>100X more Major than minor6!

Deep Learning - A Slightly Different Approach to Design

- Cascade of multiple layers, composed of a few simple operations
 - Linear algebra
 - Point-wise nonlinearities
 - Pooling

• Learning leverages numerical methods to *find* good parameters.

Deep Learning - A Slightly Different Approach to Design

• The pieces of deep learning are everywhere in feature design:

- What makes feature design so challenging?
 - You have to know what you want
 - You have to know how to do it

[Humphrey, E.J. // Bello, J.P.]

http://marl.smusic.nyu.edu

Learning Chroma Features

Defined versus Learned Features

CQT-to-Chroma Weights

Chroma Features

- NB: Tutorial for this is on the MARL website
 - Full Python code + data
 - Could be fun for HAMR time!

[Humphrey, E.J. // Bello, J.P.]

Learning Human-Readable Representations

• Can we use chord annotations to directly learn guitar tablature from audio?

Learning Human-Readable Representations

- Trades slight drop in performance for some notable benefits:
 - representations are directly interpretable by guitarists
 - facilitates large-scale data collection / error correction
 - reduces the degree of time / effort necessary to provide ground truth annotations
 - can generalize to never-before seen chords

	maj	min	maj7	min7	7	Ν
UC	69.58	57.24	62.08	55.38	49.60	78.21
G	69.52	55.79	63.18	55.52	46.29	77.85

	FWRR	ACQA
UC	58.72	62.02
G	58.26	61.36

[Humphrey, E.J. // Bello, J.P.]

From Genre Classification to Rhythmic Similarity

Leverage feature learning to optimize onset patterns

From Genre Classification to Rhythmic Similarity

- Approach demonstrates sensitivity to certain rhythmic nuances
 - Tempo dependence shows no significant effect
 - Fine-grained changes (swung rhythms) affect classification accuracy

From Genre Classification to Rhythmic Similarity

- Nuances of the Latin Music Dataset undermine rhythmic similarity evaluation
 - Annotation: Use trumps content
 - Selection: Brazilian bias skews discrimination
 - Unintended correlations: Tango exhibits unique signal-level qualities (bandwidth)
- Genre is a poor proxy for rhythmic similarity
 - Sertaneja is better defined by lyrical themes
 - Global pop influence flattens rhythm content

Melody Extraction from Polyphonic Audio

- We're curating a dataset!
- Goals:
 - A few hundred full-length pieces
 - Annotations:
 - Predominant f0
 - Time-aligned Instruments / Sources
 - Genre
- Developing tools for monophonic f0 annotation (collaboration w/C4DM)
- Targeting a May / ISMIR release
- Let us know if you'd like to help!

Pattern Discovery via Segmentation Methods

- Motives are short melodic/harmonic ideas that occur at least twice in a piece
- Idea: Use tools from music segmentation to discover these patterns
- Approach:
 - key-invariant self-similarity matrix (SSM)
 - novel path finding algorithm
- Works both on symbolic and audio representations
- Best MIREX results using audio as input
 - (Also worst results :-D)

Patterns found in key-invariant SSM of Beethoven Op. 2 No.1

Perceptually-Based Evaluation of Music Boundaries

- Goal: Explore the relevance of the Precision and Recall values when
 evaluating the boundaries of music segmentation algorithms
- Method: Three experiments where subjects rate the quality of various boundaries.
- Take-aways:
 - Precision is more perceptually relevant than Recall
 - Proposed an F_{α} measure instead of F_1 score (with $\alpha < 1$)

$$F_{\alpha} = (1 + \alpha^2) \frac{P \cdot R}{\alpha^2 P + R}$$

[Nieto, O. // Jehan, T. // Farbood, M. // Bello, J.P.]

Citygram: Visualizing Urban Non-Ocular Ecology

Non-Music Audio Research

Extreme Vocal Effects Citygram One Acoustic Ecology

Extreme Vocal Effects

- Automatic classification of EVEs
- EVE Types:
 - Growl
 - Fry Scream
 - Roughness
- Features:
 - MFCC
 - Spectral Contrast
 - Zero Crossings in TD
 - Loudness (RMS)
 - K-means

Citygram One - Mapping Acoustic Ecology

- Mapping non-ocular spatio-acoustic energy
 - Dynamic, quasi-real-time sound maps
 - Publicly accessible and as open as possible
 - Exploration portal for the public, artists, policymakers, and researchers
- Soundmaps are valuable, but non-existent
 - Invisible energies such as sound underrepresented
 - Accurately quantify and measure "noise pollution"
 - Richer representation of urban landscapes

Citygram One - Mapping Acoustic Ecology

- Goal: Create and deploy a cyber-physical system
 - Acquisition build/deploy remote sensor network
 - Analysis content-based + context-based
 - Visualization map overlays, multiple features
 - Citizen science sound recording / annotation

Urban Auditory Scene Analysis

- Phase I: Source ID (siren, jackhammer, gunshot...)
 - Curate dataset (annotated urban sound collections are scarce!)
 - Train/test ML algorithms for source ID
- Phase 2: Content + Context
 - Explore relation with other sources of city data (311 noise complaints, crime stats, etc.)

http://marl.smusic.nyu.edu

Acoustic Ecology

The Marinexplore and Cornell University Whale Detection Challenge

0 • 249 teams Monday, April 8, 20
(

Dashboard

Public Leaderboard · Private Leaderboard

This competition has completed. This leaderboard reflects the final standings.

 ∇

See someone using multiple accounts? Let us know.

#	∆1w	Team Name * in the money	Score 🔞	Entries	Last Submission UTC (Best – Last Submission)
1	†3	SluiceBox 11 .	0.98384	70	Sun, 07 Apr 2013 18:58:34
2	†3	alfnie *	0.98379	27	Sun, 07 Apr 2013 22:47:36 (-1.2h)
3	† 11	RBM 1	0.98226	32	Sun, 07 Apr 2013 23:22:16 (-1.3h)
4	ţз	Free Willzyx 🕮	0.98210	38	Sun, 07 Apr 2013 23:52:09 (-1.8h)
5	ţЗ	Jure Zbontar	0.98080	24	Mon, 01 Apr 2013 15:52:11 (-5.1h)

[Humphrey, E.J. // Cheung, B. (UC-Berkeley)]

Computer Music Systems

Automatic Accompaniment AirJam Audio Continuators Interactive Performance

Automatic Musical Accompaniment

- Goal: Given a melody, automatically generate accompaniment
- Applications:
 - Automated composition tools
 - Automated real-time accompaniment
 - Algorithmic composition
- Given a melody note sequence find the most likely sequence of chords:

 $\hat{c} = \underset{m \in \Sigma^*}{\operatorname{arg\,max}} \Pr\left[c \mid m\right] = \underset{m \in \Sigma^*}{\operatorname{arg\,max}} \Pr\left[m \mid c\right] \Pr[c] \qquad \begin{array}{c} \text{c: chord sequence} \\ \text{m: melody sequence} \\ \Sigma^*: \text{ set of all possible melody sequences} \end{array}$

 Model Pr[c|m] and Pr[c] using separate finite state machines, which can then be combined

[Forsyth, J.]

Automatic Musical Accompaniment

- Methodology:
 - train on Bach four-voice chorales (MIDI)
 - use different n-gram orders, chord quantization strategies, key normalization
 - evaluate using cross-fold validation
 - compute accuracy, average Euclidean distance between ground truth and generated sequences
 - key normalization, n-gram order improve performance

model Pr[c] using n-gram model Pr[m|c] using one-state FST

Automatic Musical Accompaniment

- Extending this approach with a speech recognition framework:
 - melody notes —> "phonemes", chords —> "words"
 - FST maps sequences of notes (melody) to chords

- Method:
 - Trained chord model and chord-melody map using the Rock Corpus Dataset (de Clerc, Temperly at U Rochester)
 - Models built using openFST and openGRM-ngram

Audio Continuators

- Builds upon and extends previous work with Continuators (Pachet, Marchini, Kosta)
 - Improved clustering methods
 - Phrase segmentation
 - Introduces interaction paradigm
- Developed objective evaluation metrics of recurrence and novelty for the system's output
- Python Continuator implementation found at <u>http://github.com/amlal/vlmc</u>

Audio Continuators

• Once trained, the interaction paradigm operates in a feed-forward manner:

[Lal, A. // Bello, J.P.]

Audio Continuators

[Lal, A. // Bello, J.P.]

AirJam - Pose Recognition for Instrument Control

- Real-time computer vision on mobile devices using built-in front camera
- Convex-hull + heuristics to detect gestures
- AirJam published on the AppStore for iPad!

AirJam

[Nieto, O. // Shasha, D.]

Interactive Performance Systems

- Objective: develop systems for
 - live-performance (e.g. concert), with musicians who improvise with the system
 - gallery installations, where participants are free to explore / play the system
- Emphasizes:
 - Composition of a set of interactions, not a single state (i.e., a score)
 - The system interface is sonic, rather than physical or tactile controllers
- Use feature extraction and classification to expand the range of interaction
 - Composer maps detected events to musical responses
 - Feature design embodies a creative element (what sonic behaviors are encoded?)

Interactive Performance Systems

[Musick, M.]

Interactive Performance Systems

[Musick, M.]

Thanks! // Questions?