
Learning to manipulate 
symbols

by Wojciech Zaremba



How to build an intelligent system ? 



How to build an intelligent system ? 
What tasks should it solve ?



Few ideas - choose proper tasks

● Atari games as a simplified world
● Learning entire algorithms (requires to 

deeper understanding / planning)
○ Neural Turing Machine
○ Program Learning
○ Mathematics learning



How to build an intelligent system ? 
What tasks should it solve ?

Is chess enough ? Or is object recognition enough ?



What can learn our models ?



What can learn our models ?
Can they learn addition ?



What can learn our models ?
Can they learn addition ?

Can they learn arbitrary computation function ?



Examples

Sequence of character on the input and on the output.



Why is it important ?

It’s a very hard task that requires: 
● modelling long-distance dependencies
● memory (e.g. variable assignment)
● branching (if-statement)
● multiple tasks within one



Data consumption

Model reads programs character by character, 
and tries to predict execution output. 

It doesn’t need to predict the next character in 
every step.



Our model - RNN
● 2 layers
● 400 units each
● trained with SGD
● cross-entropy loss
● Input vocabulary size 42
● Output vocabulary size 11



Our model - RNN with LSTM* cells
● LSTM presumably can model 

long range dependencies
● Train until there is no 

improvement on a validation 
set.

*Hochreiter and Schmidhuber, 1997



Subclass of programs

● can be evaluated with a single left-to-right 
pass

● operations: addition, subtraction, 
multiplication, variable assignment, if-
statement, and for-loops

● Problem complexity is defined in terms of the 
length of numbers and depth of nesting 



Why is it difficult ?

RNN’s point of view:



Qualitative results.  Exact prediction.

Properly deals with if statement and addition.



Qualitative results. 1 digit mistake.

Often leading digits and the last digits are correct.



Qualitative results. Exact prediction.

Some very nested examples might be very simple.



Qualitative results. 2 digit mistake.

Again, leading digits and the last digits are correct.



Scheduling strategies

● No curriculum learning (baseline)
○ Learning with target distribution

● Naive curriculum strategy (naive)
○ Making task gradually more difficult



Scheduling strategies

● Mixed strategy (mix)
○ Mix of all levels of hardness. Simplest programs 

occur as often as hardest one. Distribution rand
(10^rand(length)) vs rand(10^length).

● Combined strategy (combined)
○ Combination of mix with naive curriculum learning 

(so far the best).



Quantitative results. 
Absolute performance.



Quantitative results. 
Relative performance.



Understanding vs. memorizing 

● We don’t know how much our networks 
“understand” the meaning of programs vs 
how much they memorize.

● Test dataset, validation dataset, and training 
datasets have no common samples, but are 
very similar.



Learning identities in mathematics

● Executing computer programs requires 
learning how to evaluate predefined 
functions (e.g. addition etc.)

● Proving problems in mathematics is much 
harder, as we often don’t know proof in 
advance.

● We can just verify correctness when proof is 
given. 



Mathematics
● Theorem proving

○ Requires search over all possible combinations of 
operators

○ Intractable for all but simple proofs
● Yet (some) humans are able to do it

○ Have experience of related problems
○ Known math “tricks”

● We focus on simpler problem: discovering identities



Toy Example
Consider two matrices A and B:

Naive computation takes O(n^3):

An equivalent O(n^2) computation:



Discovering Efficient Identities

● Define a grammar G of operators
● Given some target expression T within the 

domain of G
○ E.g. sum(sum(A*B,2),1)

● Find an identical expression that has lower 
computational complexity
○ i.e. avoids high complexity operators



Overview

● Representation of math expressions

● Searching over expressions

● Distributed representation of expressions 
using a tree neural network (recursive neural 
networks).



Grammar Rules
Matrix-matrix multiply X * Y

Matrix-vector multiply X * y

Matrix-element multiply X .* Y

Matrix transpose X’ 

Column-sum sum(X,1) 

Row-sum sum(X,2) 

Column-repeat repmat(X,1,m) 

Row-repeat repmat(X,n,1)



Allowable Expressions

● Variables: matrix or vector
● Targets are homogeneous polynomials 

○ i.e. only contain terms of same 
■ degree (ab + a2 + ac) (all terms are degree 2)
■ but not (a2 +b)

● Still includes many useful expressions



Example: Taylor Series Approximation

Consider RBM partition 
function:

1st term in Taylor series:



this is a polynomial computation vs exponential computation in the 
naive algorithm

Example: Taylor Series Approximation

2nd term in 
Taylor series:



Example: Taylor Series Approximation

6th order:

Our framework can 
find it.

O(n^3)



Representing Symbolic Expressions

● Pure symbolic too slow
● Use numerical representation 

○ Pick P random numbers (P large) for each element 
of each variable 

○ So for an r x c matrix, we have P copies, each filled 
with random numbers

● Important detail: we use fixed r and c 
○ No definitive guarantee for other dimensions



Representing Symbolic Expressions
● Target expression: sum(sum(A*A’,1),2) 
● Use P copies of A
● Representation of target is descriptor vector (length P) 

○ Each element is evaluation one copy
○ Vector is of length P
○ If descriptors match -> equivalent expressions

● Using is real values is unstable, so use integers modulo 
large prime.



Overview

● Representation of math expressions

● Searching over expressions

● Distributed representation of expressions 
using a tree neural network



Combinatorial Explosion

● Polynomials of degree 1:

● Polynomials of degree 2:



Prior Over Computation Trees

● Recall goal: find equivalent expressions to 
target
○ i.e. descriptors match
○ Restrict grammar to use operators with lower 

complexity than target
○ If any match found then sure to be efficient w.r.t. 

target

Want to learn a good prior over expressions



Searching over Computation Trees

● Scheduler picks potential new operators to 
append to current expression(s) 

● Example: 
○ Current expression:

○ Valid operators to append:



Searching over Computation Trees
● Scorer ranks each possibility (i.e. how likely they are to 

lead to the solution), using prior

● Sample new operator according to scorer probabilities

Score: 0.3

Score: 0.05

Score: 0.65



Scorer Strategy

● Naïve: 
○ no prior Just select randomly from all valid operators

● n-gram prior

● Tree Neural Network prior



Prior learning
● Use curriculum learning approach
● Start with easy targets (low polynomial degree k)

● Build prior from these simple solutions
● Apply to harder target (next degree k)

k = 3

k = 8

k = 11



Building N-gram Prior

● Break solutions into n-
grams

● Prior is histogram of n-
grams:



Experiments
● 5 families of expressions (vary degree k)

○ Multiply-sum:
○ Element-wise multiply-sum:
○ Symmetric polynomials:
○ RBM-1:
○ RBM-2:

● Start with k=1 and work up to k=15
● Time cut-off: 600 seconds
● Repeat 10 times, measure fraction successful



K=2:  sum((A ∗ ((sum(A, 1)) ’)) , 1);
K=5:  sum((A ∗ ((((A ∗ (((sum((A’), 1)) ∗ A)’))’) ∗ A)’)), 1)
K=9:  sum((A ∗ ((((A ∗ ((((A ∗ ((((A ∗ (((sum((A’), 1)) ∗ A)’))’) ∗ A)’))’) ∗ A)’))’) ∗ A)’)), 1))
K=14: sum((A ∗ ((((A ∗ ((((A ∗ ((((A ∗ ((((A ∗ ((((A ∗ ((((A ∗ ((sum(A, 1)) ’)) ’) ∗ A) ’)) ’) ∗ A) ’)) ’) ∗ A)’))’) ∗ 
A)’))’) ∗ A)’))’) ∗ A)’)), 1) 



K=2:   sum(((sum(A, 1)) .∗ (sum(A, 1))) , 2)
K=3:   sum((sum(((repmat((sum((repmat((sum(A, 1)), n, 1) .∗ A), 2)), 1, m) .∗ A) .∗ A), 2)), 1)
K=4:   sum((sum((repmat((sum((repmat((sum(((repmat((sum(A, 1)), n, 1) .∗ A) .∗ A), 2)), 1, m)
   .∗ A)  , 1)), n, 1) .∗ A), 2)), 1) 



K=2: (1 / 2) ∗ (((sum(A, 2)) ∗ (sum(A, 2)))) + (50 / −100) ∗ ((A ∗ (A’)));
K=3: (1 / 6) ∗ ((sum(((sum(A, 2)) ∗ ((sum(A, 2)) ∗ A)) , 2))) + (50 / −100) ∗ ((A ∗ (((sum(A, 2))
 ∗ A) ’) )) + (1 / 3) ∗ (((A .∗ A) ∗ (A’)));
K=4: (25 / −100) ∗ ((A ∗ (((sum(A, 2)) ∗ ((sum(A, 2)) ∗ A))’))) + (1 / 8) ∗ ((A ∗ ((A ∗ ((A’) ∗ A))
 ’))) + (1 / 3) ∗ (((A ∗ ((A’) .∗ (A’))) ∗ (sum(A, 2)))) + (25 / −100) ∗ (((((A’) .∗ (A’))’) ∗
 ((A’) .∗ (A’)))) + (1 / 24) ∗ ((sum(((sum(((sum(A, 2)) ∗ ((sum(A, 2)) ∗ A)), 2)) ∗ A), 2))); 



K=2: 2ˆ(n − 3) ∗ (2 ∗ ((sum(((A .∗ A) ’) , 1))) + 2 ∗ ((sum(((A’) .∗ repmat((sum((A’) , 1)) , m, 1)) , 1))))
K=3: 2ˆ(n − 4) ∗ (6 ∗ ((sum((((((A’) .∗ repmat((sum((A’) , 1)) , m, 1)) ’) .∗ A) ’) , 1))) + 2 ∗ ((sum(((A’) .∗ repmat
((sum(((A’) .∗ repmat((sum((A’) , 1)) , m, 1)) , 1)) , m, 1)) , 1))));
K=4: 2ˆ(n − 5) ∗ (12 ∗ (((sum(((A .∗ A) ’) , 1)) .∗ (sum(((A’) .∗ repmat((sum((A’) , 1)) , m, 1)) , 1)))) + 6 ∗ (((sum
(((A .∗ A) ’) , 1)) .∗ (sum(((A .∗ A) ’) , 1)))) + 2 ∗ ((sum(((A’) .∗ repmat((sum(((A’) .∗
 repmat((sum(((A’) .∗ repmat((sum((A’), 1)), m, 1)), 1)), m, 1)), 1)), m, 1)), 1))) +−4∗ ((sum
 (((((((A .∗ A)’) .∗ (A’))’) .∗ A)’), 1)))); 



RBM-2

● No scorer strategy able to get beyond k=5
○ However, the k = 5 solution was found by the TNN 

consistently faster than the random strategy (100 ± 
12 vs 438 ± 77 secs).

● Hypothetically, RBM-2 doesn’t have many 
repetitive structures.

K=5: 2ˆ(n+m)∗(((sum(sum((repmat(( sum(A, 1) .∗ sum(A, 1)), [n, 1]) .∗ ( ( repmat(sum(A, 2), [1, m]) .∗ repmat(sum(A, 1), [n, 1])) .∗ A)), 2), 1) .∗ −40) + (sum((( sum(A, 1) 
.∗ sum(A, 1)) .∗ sum((repmat(sum(A, 1), [n, 1]) .∗ ( repmat(sum(A, 2), [1, m]) .∗ repmat(sum(A, 1) , [n, 1]))) , 1)) , 2) .∗ −10) + (( sum(sum(A, 2), 1) .∗ sum(( ( sum(A, 2) .
∗ sum(A, 2)) .∗ sum(( A .∗ A), 2)), + (sum(( repmat (sum(sum(A, 2) , 1) , [n , 1]) .∗ ( repmat (sum(sum(A, 2) , 1) , [n , 1]) repmat(sum(A, 2) , [1, m]) .∗ repmat(sum(A, 1) , 
[n, 1])) .∗ A) , 2))) , 1) + (sum((sum(( A .∗ repmat(sum(A, 1) , [n, 1])) , 2) .∗ sum((repmat(sum(A, 1) , [n, 1)) .∗ −60) .∗ sum(( (.∗ 60) ... 1]) .∗ (repmat(sum(A, 2) , [1, 
m]) .∗ repmat(sum(A, 1) , [n, 1]))) , 2)) , 1) .∗ 60) + sum(sum( ( ( repmat(sum(A, 2) , [1, m]) .∗ repmat(sum(A, 1) , [n, 1])) .∗ ( A .∗ ( A .∗ A))) , 2) , 1) .∗ 80) + (sum
((sum(A, 2) .∗ (sum(A, 2) .∗ sum(( ( repmat(sum(A, 2) , [1, m]) .∗ repmat(sum(A, 1) , [n, 1])) .∗ A), 2))), 1) .∗ −40)+ (sum((repmat(sum(( sum(A, 2) .∗ sum(A, 2)), 1), [n, 1]) 
.∗ sum(( ( repmat(sum(A, 2), [1, m]) .∗ repmat(sum(A, 1), [n, 1])) .∗ A), 2)), 1) .∗ 60) + ( ( ( sum(A, 1) ∗ (A’)) ∗ ( ( A ∗ (A’)) ∗ sum(A, 2))) .∗ 120) + (sum((( sum(A, 2) .∗ 
sum(A, 2)) .∗ sum((repmat(sum(A, 2), [1, m]) .∗ ( repmat(sum(A, 2), [1, m]) .∗ repmat(sum(A, 1) , [n, 1]))) , 2)) , 1) .∗ −10) + (( sum(sum(A, 2), 1) .∗ sum(( ( sum(A, 1) .∗ 
sum(A, 1)) .∗ sum(( A .∗ A), 1)), 2)) .∗ −60) + (sum((sum(repmat(( sum(A, 2) .∗ sum(A, 2)), [1, m]), 1) .∗ sum((repmat(sum(A, 2), [1, m]) .* ( repmat(sum(A, 2) , [1, m]) .∗ 
repmat(sum(A, 1) , [n, 1]))) , 1)) , 2) .∗ 15) + ( ( ( sum(sum(A, .......



Overview

● Representation of math expressions

● Searching over expressions

● Distributed representation of expressions 
using a tree neural network 



Recursive nets why ? 

● N-gram can one have a shallow 
understanding (limited by N).

● Looking for model that can 
comprehend entire computation tree 
regardless of its depth.



TNN Pre-Training

RNN                  maps expression S to vector x
● Two examples:

● But want RNN to “understand” math, i.e.:



TNN Pre-Training
● Train on equivalent mathematical expressions. 
● Goal: make it understand entire computation tree.



TNN Pre-Training Results

Note: no explicit knowledge of math operators



Building Prior from TNN

● Take solutions from lower degrees within 
family

● Pass each part through pre-trained TNN





Thanks to my collaborators

Ilya Sutskever, Karol Kurach, and Rob Fergus 



Q&A
● Learning Atari games
● Predicting program execution results
● RNN with LSTMs
● Scheduling strategies (baseline, naive, mix, combined)
● Learning mathematical identities
● Representation of mathematical identities.

Paper: Learning to Execute (arxiv)
            https://github.com/wojciechz/learning_to_execute 
Paper: Learning to Discover Efficient Mathematical Identities (NIPS 2014 spotlight)
            https://github.com/kkurach/math_learning 

I am happy to answer any questions.

https://github.com/wojciechz/learning_to_execute
https://github.com/kkurach/math_learning

