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Overview

• Recurrent neural networks

• Training RNNs

• Long short-term memory recurrent neural networks

• Distributed training of LSTM RNNs

• Acoustic modeling experiments

• Sequence training LSTM RNNs
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Recurrent neural networks

• An extension of feed-forward neural
networks

• Output fed back as input with time
delay.

• A dynamic time-varying neural
network

• Recurrent layer activations encode
a “state”.

• Sequence labelling, classification,
prediction, mapping.

• Speech recognition [Robinson et al.,
1993]

x1

x2

x3

x4

r1

r2

r3

r4

r5

r6

y1

y2

y3

y4

y5

Google Speech LVCSR with LSTM RNNs 3/37



Back propagation through time

Unroll the recurrent network through time.

x1

x2

x3

x4

y1

y2

y3

y4

• Truncating at some limit “bptt steps” it looks like a DNN.
• External gradients provided at the outputs

• e.g. gradient of cross entropy loss

• Internal gradients computed with the chain rule
(backpropagation).
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Simple RNN

Simple RNN architecture in two alternative representations:
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(b) RNN unrolled in time

RNN hidden and output layer activations:

ht = σ(Whxxt + Whhht−1 + bh)

yt = φ(Wyhht + by )
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Training RNNs

• Forward pass: calculate activations for each input
sequentially and update network state

• Backward pass: calculate error and back propagate
through network and time (back-propagation through
time (BPTT))

• Update weights with the gradients summed over all time
steps for each weight

• Truncated BPTT: error is truncated after a specified
back-propagation time steps
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Backpropagation through time

Acoustic features

State posteriors

External gradients

Internal gradients
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Long Short-Term Memory (LSTM) RNN

• Learning long-term dependencies is difficult with simple
RNNs, unstable training due to vanishing gradients
problem [Hochreiter, 1991]

• Limited capability (5-10 time steps) to model long-term
dependencies

• LSTM RNN architecture designed to address these
problems [Hochreiter and Schmidhuber, 1997]

• LSTM memory block: memory cell storing temporal state
of network and 3 multiplicative units (gates) controlling
the flow of information
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Long Short-Term Memory Recurrent Neural

Networks

• Replace the units of an RNN with memory cells with
sigmoid
• Input gate
• Forget gate
• Output gate
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• Enables long-term dependency learning
• Reduces the vanishing/exploding gradient problems
• 4× more parameters than RNN
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LSTM RNN Architecture

Input gate: controls flow of input activations into cell
Output gate: controls output flow of cell activations
Forget gate: process continuous input streams [Gers et al.,
2000]
“Peephole” connections added from cells to gates to learn
precise timing of outputs [Gers et al., 2003]
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LSTM RNN Related Work

• LSTM performs better than RNN for learning
context-free and context-sensitive languages [Gers and
Schmidhuber, 2001]

• Bidirectional LSTM for phonetic labeling of acoustic
frames on the TIMIT [Graves and Schmidhuber, 2005]

• Online and offline handwriting recognition with
bidirectional LSTM better than HMM-based system
[Graves et al., 2009]

• Deep LSTM - stack of multiple LSTM layers - combined
with CTC and RNN transducer predicting phone
sequences gets state of the art results on TIMIT [Graves
et al., 2013]
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LSTM RNN Activation Equations

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT ) to an output sequence
y = (y1, ..., yT ) by calculating the network unit activations
using the following equations iteratively from t = 1 to T :

it = σ(Wixxt + Wimmt−1 + Wicct−1 + bi) (1)

ft = σ(Wfxxt + Wfmmt−1 + Wfcct−1 + bf ) (2)

ct = ft � ct−1 + it � g(Wcxxt + Wcmmt−1 + bc) (3)

ot = σ(Woxxt + Wommt−1 + Wocct + bo) (4)

mt = ot � h(ct) (5)

yt = φ(Wymmt + by ) (6)
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Proposed LSTM Projected (LSTMP) RNN

• O(N) learning computational complexity with stochastic
gradient descent (SGD) per time step

• Recurrent connections from cell output units (nc) to cell
input units, input gates, output gates and forget gates

• Cell output units connected to network output units

• Learning computational complexity dominated by
nc × (4× nc + no) parameters

• For more effective use of parameters, add a recurrent
projection layer with nr linear projections (nr < nc) after
LSTM layer.

• Now nr × (4× nc + no) parameters
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LSTM RNN Architectures

LSTM RNN architectures
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LSTMP RNN Activation Equations

With the proposed LSTMP architecture, the equations for the
activations of network units change slightly, the mt−1

activation vector is replaced with rt−1 and the following is
added:

it = σ(Wixxt + Wimrt−1 + Wicct−1 + bi) (7)

ft = σ(Wfxxt + Wfmrt−1 + Wfcct−1 + bf ) (8)

ct = ft � ct−1 + it � g(Wcxxt + Wcmrt−1 + bc) (9)

ot = σ(Woxxt + Womrt−1 + Wocct + bo) (10)

mt = ot � h(ct) (11)

rt = Wrmmt (12)

yt = φ(Wyr rt + by ) (13)

where the r denote the recurrent unit activations.
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Deep LSTM RNN Architectures

LSTM RNN architectures
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Distributed Training of LSTM RNNs

• Asynchronous stochastic gradient descent (ASGD) to
optimize network parameters

• Google Brain’s distributed parameter server: store, read
and update the model parameters (50 shards)

• Training replicas on 200 machines (data parallelism)

• 3 synchronized threads in each machine (data parallelism)

• Each thread operating on mini batch of 4 sequences
simultaneously

• TBPTT: 20 time steps of forward and backward pass

• Training: read fresh parameters, process 3× 4× 20 time
steps of input, send gradients to parameter server

• Clip cell activations to [-50, 50] range for long utterances
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Asynchronous Stochastic Gradient Descent
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Asynchronous Stochastic Gradient Descent
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Asynchrony

Three forms of asynchrony:

• Within a replica every bptt steps frame chunk is
computed with different parameters.
• State is carried over from one chunk to the next.

• Each replica is updating independently.

• Each shard of the parameter server is updated
independently.
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System

• Google Voice Search in US English

• 3M (1900hours) 8kHz anonymized training utterances

• 600M 25ms frames (10ms offset)

• Normalized 40-dimensional log-filterbank energy features

• 3-state HMMs with 14, 000 context-dependent states

• Cross-entropy loss

• Targets from DNN Viterbi forced-alignment

• 5 frame output delay

• Hybrid Unidirectional“DLSMTP”

• 2 layers of 800 cells with 512 linear projection layer.

• 13M parameters
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Evaluation

• Scale posteriors by priors for inference.

• Deweight silence prior.

• Evaluate ASR on a test set of 22, 500 utterances

• First pass LM of 23 million n-grams, lattice rescoring with
an LM of 1 billion 5-grams
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Results for LSTM RNN Acoustic Models

WERs and frame accuracies on development and training sets:
L number of layers, for shallow (1L) and deep (2,4,5,7L)
networks C number of memory cells and N total number of
parameters

C Depth N Dev Train WER
(%) (%) (%)

840 5L 37M 67.7 70.7 10.9
440 5L 13M 67.6 70.1 10.8
600 2L 13M 66.4 68.5 11.3
385 7L 13M 66.2 68.5 11.2
750 1L 13M 63.3 65.5 12.4
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Results for LSTMP RNN Acoustic Models

WERs and frame accuracies on development and training sets:
L number of layers, for shallow (1L) and deep (2,4,5,7L)
networks C number of memory cells, P number of recurrent
projection units, and N total number of parameters

C P Depth N Dev Train WER
(%) (%) (%)

6000 800 1L 36M 67.3 74.9 11.8
2048 512 2L 22M 68.8 72.0 10.8
1024 512 3L 20M 69.3 72.5 10.7
1024 512 2L 15M 69.0 74.0 10.7
800 512 2L 13M 69.0 72.7 10.7

2048 512 1L 13M 67.3 71.8 11.3
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LSTMP RNN models with various depths and sizes

C P Depth N WER (%)

1024 512 3L 20M 10.7
1024 512 2L 15M 10.7
800 512 2L 13M 10.7
700 400 2L 10M 10.8
600 350 2L 8M 10.9
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Sequence training

• Conventional training minimizes the frame-level cross
entropy between the output and the target distribution
given by forced-alignment.

• Alternative criteria come closer to approximating the
Word Error Rate and take into account the language
model:

• Instead of driving the output probabilities closer to the
targets, adjust the parameters to correct mistakes that we
see in decoding actual utterances.

• Since these critera are computed on whole sequences we
have sequence discriminative training [Kingsbury, 2009].

• e.g. Maximum Mutual Information or state-level
Minimum Bayes Risk.
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Sequence training criteria

Maximum mutual information is defined as:

FMMI (θ) =
1

T

∑
u

log
pθ(Xu|Wu)κp(Wu)∑
W pθ(Xu|W )κp(W )

. (14)

State-level Minimum Bayes Risk (sMBR) is the expected
frame state accuracy:

FsMBR(θ) =
1

T

∑
u

∑
W

pθ(Xu|W )κp(W )∑
W ′ pθ(Xu|W ′)κp(W ′)

δ(s, sut). (15)
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Sequence training details

Discard frames with state occupancy close to zero, [Veselý
et al., 2013]
Use a weak language model p(Wu) and attach the reciprocal
of the language model weight, κ, to the acoustic model.
No regularization. (Such as `2-regularization around the initial
network) or smoothing such as the H-criterion [Su et al., 2013]
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Computing gradients
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Figure: Pipeline to compute outer derivatives.
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Algorithm
U ← the data set of utterances with
transcripts
U ← randomize(U)
θ is the model parameters
for all u ∈ U do
θ ← read from the parameter server
calculate κl

(MMI/sMBR)
θ,ut (s) for u

for all s ∈ subsequences(u, bptt steps)
do
θ ← read from the parameter server
forward pass(s, θ, bptt steps)
~∆θ ← backward pass(s, θ, bptt steps)

∆θ ← sum gradients(~∆θ, bptt steps)
send ∆θ to the parameter server

end for
end for
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Asynchronous sequence training system
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Figure: Asynchronous SGD: Model replicas asynchronously fetch
parameters θ and push gradients ∆θ to the parameter server.

Google Speech LVCSR with LSTM RNNs 31/37



Results: Choice of Language model

How powerful should the sequence training language model
be?

Table: WERs for sMBR training with LMs of various n-gram
orders.

CE 1-gram 2-gram 3-gram

10.7 10.9 10.0 10.1
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Results

Table: WERs for sMBR training of LSTM RNN bootstrapped
with CE training on DNN versus LSTM RNN alignments.

Alignment CE sMBR

DNN Alignment 10.7 10.1
LSTM RNN Alignment 10.7 10.0
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Switching from CE to sequence training

Table: WERs achieved by MMI/sMBR training for around 3 days
when we switch from CE training at different times before
convergence. ∗ indicates the best WER achieved after 2 weeks of
sMBR training.

CE WER at switch MMI sMBR

15.9 13.8 -
14.9 12.0 -
12.0 10.8 10.7
11.2 10.8 10.3
10.7 10.5 10.0 (9.8∗)

An 85M parameter DNN achieves 11.3% WER (CE) and
10.4% WER (sMBR).
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Conclusions

• LSTMs for LVCSR outperform much larger DNNs, both
CE (5%) and sequence-trained (6%).

• Distributed sequence training for LSTMs was a straight
forward extension of DNN sequence training.

• LSTMs for LVCSR improved (8% relative) by sequence
training

• sMBR gives better results than MMI.

• Sequence training needs to start from a converged model.
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Ongoing work

• Alternative architectures

• Bidirectional

• Modelling units

• Other tasks
• Noise robustness
• Speaker ID
• Language ID
• Pronunciation modelling
• Language modelling
• Keyword spotting
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