Kernels vs. DNNs for Speech
Recognition

Joint work with:
Columbia: Linxi (Jim) Fan, Michael Collins (my advisor)

USC: Zhiyun Lu, Kuan Liu, Alireza Bagheri Garakani, Dong Guo, Aurélien
Bellet, Fei Sha

IBM: Brian Kingsbury

Outline

* Background
* Kernel methods

* Kernel approximation
e Random Fourier Features

* Acoustic modeling overview

* Our work
* Kernel composition
 Parallel training
* Experimental results

e Future work
* Nystrom method
* Image data

Outline

* Background
* Review: Kernel methods

Linear SVM Review

Trying to find separating hyperplane with largest margin

Primal vs. Dual

* Primal problem:

1 i T :
111!%1% —|lw|* +C Z & subject to yi(w x; +b)—14+& >0

— Classifier: f(z | w,b) = sign(w!z +b)

e Dual Problem

111.:’-1‘{2{1? — — Zﬂgf}jjﬁjj x; x; subject to Zam =0 and «; € |0,C]

—> Classifier: f(z | a) = sign(E Y T;

Background: Kernel Methods

feature 508

map

Kernelized Primal vs. Dual

* Kernelized Primal problem:

111111 —Hu,|| + CZ'E’E subject to y;(w! é(a;) +b) —1+& >0
* Kernelized Dual Problem /Only use dOt'prOdUCtS ©
maJ{Zo:i 1 Za-iaj-yiyjqi(;1fi)T¢5(;rj) subject to Za@yi = 0 and «; € [0, C]

ma};Zat — — Za a;jy;yik(x;, ;) subject to Z a;y; = 0 and «a; € [0, C]

'\

—> Classifier: f(x | o) = Sign(z a;yik(x;, x) +b)

\
NA2 sum.. ®/ Kernel Trick!

Kernel Trick

Kernel
Examples

Polynomial kernel (degree p): k(z,
Radial Basis Function (RBF) Kernel: k(zx,

Laplacian Kernel: k(zx,

Sigmoid kernel: k(x,

(x"y + 1J
EKPE—@| r —yl|3)

1 |
exp(——||z —yll7)

tanh(kr! y — &)

Outline

* Background
* Review: Kernel methods

* Kernel approximation
e Random Fourier Features

Kernel Approximation

No Kernel: G = XTX

— G, ; = x?;rj

Exact Kernel: ¢ = &'
— Gij = o(x:)" o(z;)

Approximate Kernel: ¢ = c=7'7

— G?ﬂj o =

Can use z(x) in primal, instead of phi(x)!

How to construct approximation?

Theorem (Bochner): A continuous kernel k(x,y) = k(r —y) on R? is positive definite

if and only if &£(d) is the Fourier transform of a non-negative measure.

k(x,y) = E[z(x)T 2(y)], where:

o 2(x); =4/ %cos[-w?:zt + b)
Kernel Name k(A) p(w)
. vn fr nl 2 . &z lles 115
e w; drawn from p(w), the Gaussian - (Eﬂ_}_%lﬂ__rz
probability distribution computed Laplacian e— 1Al Hd —T T
: - , "‘*"d
as the Fourier transform of k(9) Cauchy I1, m%ﬂi e ”ﬁ”l

e [is drawn uniformly from [0, 27]

[1] Random Features for Large-Scale Kernel Machines. Ali Rahimi and Benjamin Recht. NIPS 2007, Vancouver.

Outline

* Background
* Review: Kernel methods

* Kernel approximation
e Random Fourier Features

* Acoustic modeling overview

Acoustic modeling

Feature ’ d Concatenate d(1 —I—QTL)
£ E R Neighbor Frames £ E R

e Given this x, the acoustic modeling problem is to produce a
probability distribution over phonemes (or triphones, or
senones...) for this frame.

* Objective function: Maximize log-probability of training data

X , 1 A 17112
ma d _log(P(y; | 2:, W) = SV

Training Acoustic Models

* Using DNNs with back-propagation

Phonetic ~ _Fhoneme
Lahds Probahﬂ.ity
. Vector
2, 0.04
ﬂll [
. - e Often, some unsupervised
o e or discriminative pre-
[)—— 0.08 . .
training
- ill- 0.12
ﬂ. 0.04

(O 0.05

Why use DNNs??

* They are powerful models, that can be trained effectively
* They beat the previous state of the art by a large margin!!!

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DMNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 305 1285 274 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 236 171 (2,000 H)
EMGLISH BROADCAST MEWS 50 17.5 18.8
BING WVOICE SEARCH
(>ENTENCE ERROR RATES) 24 30.4 36.2
GOOGLE VOICE INPUT 5.870 12.3 16.0 (> 5,870 H)
YOUTUBE 1,400 47.6 52.3

Geoffrey Hinton, Li Deng, Dong Yu, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath George Dahl,
and Brian Kingsbury, Deep Neural Networks for Acoustic Modeling in Speech Recognition, in IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97,
November 2012

Issues with DNNSs

* Costly to train (days on GPUs...)
* Sensitive to initialization
* Non-convex optimization problem

* Need to use lots of tricks, like momentum, drop-out, fancy initialization
and pre-training, etc.

* Lots of hyper-parameters to tune (# of layers, # hidden units per layer,
learning rate, regularization, etc.)

* Not well understood theoretically.
* Model not interpretable: “Magic black box”

Our Work

Random W

INPUT 1

INPUT 2

INPUT 3

INPUT 4

INPUT §

INPUT 6

INPUT 7

.
-t

Cosine

~

Trainable
Parameters

Kernel Combinations

Additive Kernels: k(x,y) = ki(z,y) + ko, y)
— simply concatenate feature representations for each kernel
Multiplicative Kernels: k(x,y) = ki(x,y) * ka(x. y)

— Draw w; from p;, and then take w = Z w;
Composite Kernels: k(x,y) = ka(o1(x). 01(y)) = da(od1(x) T d2(p1(y))T

—> Equivalent to having 2 hidden layers, each with random weights

— For efficiency, we perform supervised dimensionality reduction on output of first hidden layer

Parallel training

* When have hidden layer with >= 100,000 units, we split the training
into batches, each with 25,000 hidden units.

* We then combine the models trained from all these models by taking
the geometric means of their outputs.

Data sets used

* |ARPA Babel Program Cantonese/Bengali Language Packs
20-hour train/test sets
Approximately 7.5 millions training, 1 million held-out, 7 million test

1000 phone-states to predict (quinphone context-dependent HMM states
clustered using decision trees)

360 dimensional frame representations

Baselines

* IBM’s DNN

* 5 hidden layers, 1024 logistic units each
* Trained using greedy layer-wise discriminative pretraining.
* Fine-tuning using SGD with mini-batches of size 250

* RBM-DNN
* 1,2,3, or 4 hidden layers, each with 500, 1000, or 2000 logistic units
* Unsupervised pre-training using Contrastive Divergence algorithm
* Fine tuning using SGD

Results

* Best perplexity and accuracy by different models (heldout/test)

Bengali Cantonese
Model | perp | acc (%) perp | acc (%)
ibm | 3.4/3.5 | 71.5/71.2 | 6.8/6.16 | 56.8/58.5
rbm 3.3/3.4 | 72.1/71.6 | 6.2/5.7 | 58.3/59.3
Tk | 3.7/3.8 | 70.1/60.7 | 6.8/6.2 | 57.0/58.3
a2k | 3.6/38 | 70.3/70.0 | 6.7/6.0 | 57.1/58.5
m-2-k | 3.7/3.8 | 70.3/69.9 | 6.7/6.1 | 57.1/58.1
c2k | 35/3.6 | 71.0/704 | 65/5.7 | 57.3/588

* Best token error rates

Model | Bengali | Cantonese
ibm 70.4 67.3
rbm 69.5 66.3
1-k 70.0 65.7

a-2-k 73 68.8

m-2-k 72.8 69.1

c-2-k 71.2 68.1

How many random features do we need?

 Single laplacian kernel

Bengali Cantonese
Dim perp | acc (%) perp | acc (%)
2k | 4.4/4.4 | 66.5/66.8 | 8.5/74 | 52.7/54.8
5k | 4.1/4.2 | 67.8/67.8 | 7.8/7.0 | 53.9/56.0
10k | 4.0/41 | 68.4/68.3 | 7.5/6.7 | 54.9/56.6
25k | 3.8/3.9 | 69.2/69.0 | 7.1/6.4 | 55.9/57.3
50k | 3.8/3.0 | 60.7/69.4 | 6.9/6.2 | 56.5/57.0
100k | 3.7/3.8 | 70.0/69.6 | 6.8/6.2 | 56.8/58.2
200k | 3.7/38 | 70.1/69.7 | 6.8/6.2 | 57.0/58.3

* Kernel Approximation error

Average absolute error
T T T T T

0.025 —

002

(=]
o
jurd
(&)

001+

Absolute error

0005

1 1 1 1 1 1 1 1 1
10 25 50 75 100 125 150 175 200 250
Dimension of random features

Complementary representations?

* Token error rates for combined models:

Model Bengali | Cantonese
BEST SINGLE SYSTEM 69.5 6.7
rbm (h = 3, L = 2000) + 1-k 69.7 65.3
rbm (h =4, L = 1000) + 1-k 69.2 64.9
rbm (h =4, L = 2000) + 1-k 69.1 64.9

THANK YOU!!!

