
Kernels vs. DNNs for Speech
Recognition

Joint work with:
Columbia: Linxi (Jim) Fan, Michael Collins (my advisor)

USC: Zhiyun Lu, Kuan Liu, Alireza Bagheri Garakani, Dong Guo, Aurélien
Bellet, Fei Sha

IBM: Brian Kingsbury

Outline
• Background

• Kernel methods
• Kernel approximation

• Random Fourier Features

• Acoustic modeling overview

• Our work
• Kernel composition
• Parallel training
• Experimental results

• Future work
• Nystrom method
• Image data

Outline
• Background

• Review: Kernel methods
• Kernel approximation

• Random Fourier Features

• Acoustic modeling overview

• Our work
• Kernel composition
• Parallel training
• Experimental results

• Future work
• Nystrom method
• Image data

Linear SVM Review

Trying to find separating hyperplane with largest margin

• Primal problem:

• Dual Problem

Primal vs. Dual

Background: Kernel Methods

• Kernelized Primal problem:

• Kernelized Dual Problem

Kernelized Primal vs. Dual

Only use dot-products 

Kernel Trick!
N^2 sum… 

Kernel Trick

Kernel
Examples

Outline
• Background

• Review: Kernel methods
• Kernel approximation

• Random Fourier Features

• Acoustic modeling overview

• Our work
• Kernel composition
• Parallel training
• Experimental results

• Future work
• Nystrom method
• Image data

Kernel Approximation

Can use z(x) in primal, instead of phi(x)!

How to construct approximation?

[1] Random Features for Large-Scale Kernel Machines. Ali Rahimi and Benjamin Recht. NIPS 2007, Vancouver.

Outline
• Background

• Review: Kernel methods
• Kernel approximation

• Random Fourier Features

• Acoustic modeling overview

• Our work
• Kernel composition
• Parallel training
• Experimental results

• Future work
• Nystrom method
• Image data

Acoustic modeling

Extract
Frame

Feature
Extraction

Concatenate
Neighbor Frames

• Given this x, the acoustic modeling problem is to produce a
probability distribution over phonemes (or triphones, or
senones…) for this frame.

• Objective function: Maximize log-probability of training data

Training Acoustic Models

• Using DNNs with back-propagation

• Often, some unsupervised
or discriminative pre-
training

Why use DNNs??

• They are powerful models, that can be trained effectively

• They beat the previous state of the art by a large margin!!!

Geoffrey Hinton, Li Deng, Dong Yu, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath George Dahl,
and Brian Kingsbury, Deep Neural Networks for Acoustic Modeling in Speech Recognition, in IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97,
November 2012

Issues with DNNs
• Costly to train (days on GPUs…)

• Sensitive to initialization

• Non-convex optimization problem

• Need to use lots of tricks, like momentum, drop-out, fancy initialization
and pre-training, etc.

• Lots of hyper-parameters to tune (# of layers, # hidden units per layer,
learning rate, regularization, etc.)

• Not well understood theoretically.

• Model not interpretable: “Magic black box”

Our Work
Random W

Cosine

Trainable
Parameters

Kernel Combinations

Parallel training

• When have hidden layer with >= 100,000 units, we split the training
into batches, each with 25,000 hidden units.

• We then combine the models trained from all these models by taking
the geometric means of their outputs.

Data sets used

• IARPA Babel Program Cantonese/Bengali Language Packs
• 20-hour train/test sets

• Approximately 7.5 millions training, 1 million held-out, 7 million test

• 1000 phone-states to predict (quinphone context-dependent HMM states
clustered using decision trees)

• 360 dimensional frame representations

Baselines

• IBM’s DNN
• 5 hidden layers, 1024 logistic units each

• Trained using greedy layer-wise discriminative pretraining.

• Fine-tuning using SGD with mini-batches of size 250

• RBM-DNN
• 1,2,3, or 4 hidden layers, each with 500, 1000, or 2000 logistic units

• Unsupervised pre-training using Contrastive Divergence algorithm

• Fine tuning using SGD

Results

• Best perplexity and accuracy by different models (heldout/test)

• Best token error rates

How many random features do we need?

• Single laplacian kernel

• Kernel Approximation error

Complementary representations?

• Token error rates for combined models:

THANK YOU!!!

