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Linear SVM Review

Trying to find separating hyperplane with largest margin



• Primal problem: 

• Dual Problem

Primal vs. Dual



Background: Kernel Methods



• Kernelized Primal problem: 

• Kernelized Dual Problem

Kernelized Primal vs. Dual

Only use dot-products 

Kernel Trick!
N^2 sum… 



Kernel Trick

Kernel 
Examples
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Kernel Approximation

Can use z(x) in primal, instead of phi(x)!



How to construct approximation?

[1] Random Features for Large-Scale Kernel Machines. Ali Rahimi and Benjamin Recht. NIPS 2007, Vancouver.
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Acoustic modeling

Extract 
Frame

Feature 
Extraction

Concatenate 
Neighbor Frames

• Given this x, the acoustic modeling problem is to produce a 
probability distribution over phonemes (or triphones, or 
senones…) for this frame.

• Objective function: Maximize log-probability of training data



Training Acoustic Models

• Using DNNs with back-propagation

• Often, some unsupervised 
or discriminative pre-
training



Why use DNNs??

• They are powerful models, that can be trained effectively

• They beat the previous state of the art by a large margin!!!

Geoffrey Hinton, Li Deng, Dong Yu, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath George Dahl, 
and Brian Kingsbury, Deep Neural Networks for Acoustic Modeling in Speech Recognition, in IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 
November 2012



Issues with DNNs
• Costly to train (days on GPUs…)

• Sensitive to initialization

• Non-convex optimization problem

• Need to use lots of tricks, like momentum, drop-out, fancy initialization 
and pre-training, etc.

• Lots of hyper-parameters to tune (# of layers, # hidden units per layer, 
learning rate, regularization, etc.)

• Not well understood theoretically.  

• Model not interpretable: “Magic black box”



Our Work
Random W

Cosine

Trainable 
Parameters



Kernel Combinations



Parallel training

• When have hidden layer with >= 100,000 units, we split the training 
into batches, each with 25,000 hidden units.

• We then combine the models trained from all these models by taking 
the geometric means of their outputs.



Data sets used

• IARPA Babel Program Cantonese/Bengali Language Packs
• 20-hour train/test sets

• Approximately 7.5 millions training, 1 million held-out, 7 million test 

• 1000 phone-states to predict (quinphone context-dependent HMM states 
clustered using decision trees)

• 360 dimensional frame representations



Baselines

• IBM’s DNN
• 5 hidden layers, 1024 logistic units each

• Trained using greedy layer-wise discriminative pretraining.

• Fine-tuning using SGD with mini-batches of size 250

• RBM-DNN
• 1,2,3, or 4 hidden layers, each with 500, 1000, or 2000 logistic units

• Unsupervised pre-training using Contrastive Divergence algorithm

• Fine tuning using SGD



Results

• Best perplexity and accuracy by different models (heldout/test)

• Best token error rates



How many random features do we need?

• Single laplacian kernel

• Kernel Approximation error



Complementary representations?

• Token error rates for combined models:



THANK YOU!!!


