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Motivation: need for noise robustness Need for better mobile voice quality

Need for better mobile voice quality

There are now more mobile devices than humans on earth1

But recording conditions for these devices leave much to be desired

Can we recover high quality speech from noisy & degraded recordings?

1
http://www.independent.co.uk/life-style/gadgets-and-tech/news/

there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
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Motivation: need for noise robustness Need for better mobile voice quality

Why mobile voice quality stinks2

2
Je↵ Hecht. Why mobile voice quality still stinks—and how to fix it. IEEE Spectrum, September 2014
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Conversational mobile software agents
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Motivation: need for noise robustness Need for noise robust automatic speech recognition (ASR)

But automatic speech recognition doesn’t work there3

3
Amit Juneja. A comparison of automatic and human speech recognition in null grammar. The Journal of the Acoustical

Society of America, 131(3):EL256–EL261, February 2012
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Motivation: need for noise robustness Main challenge

Main challenge

Speech is a rich signal, it requires rich models

Synthesis models are rich enough to represent almost all speech

Non-parametric synthesis models for high quality
DNN as non-linear distance function

Parametric synthesis models for e�cient representation
e�cient gradient-based optimization of input (not model)
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Non-parametric synthesis for speech enhancement Overview

Concatenative resynthesis for speech enhancement4,5

Standard approaches try to modify noisy recordings

We instead resynthesize a clean version of the same speech

Should produce infinite suppression and high speech quality

4
Michael I Mandel, Young-Suk Cho, and Yuxuan Wang. Learning a concatenative resynthesis system for noise suppression.

In Proc. IEEE GlobalSIP, 2014
5
Michael I Mandel and Young Suk Cho. Audio super-resolution using concatenative resynthesis. In Proc. IEEE WASPAA,

2015. To appear
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Non-parametric synthesis for speech enhancement Overview

Motivating example

Your phone records your voice in quiet, close-talk conditions

Uses those recordings to replace your voice in noisy, far-talk conditions

Resynthesizes your speech from previous high-quality recordings
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Non-parametric synthesis for speech enhancement Overview

Concatenative resynthesis

Use a large dictionary of ⇠200 ms “chunks” of audio

Learn DNN-based a�nity between dictionary & mixture chunks

Perform concatenative synthesis of signal from dictionary

General robust supervised nonlinear signal mapping framework

Task Map from To

Noise suppression Noisy Clean
Audio super-resolution Reverberated, compressed Clean

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 17 / 73



Non-parametric synthesis for speech enhancement Deep neural network as nonlinear distance function

Outline

1 Motivation: need for noise robustness

2 Non-parametric synthesis for speech enhancement
Overview
Deep neural network as nonlinear distance function
Using this DNN for speech enhancement
Noise suppression experiments
Audio super-resolution experiments
Summary

3 Parametric synthesis for speech recognition

4 Summary

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 18 / 73



Non-parametric synthesis for speech enhancement Deep neural network as nonlinear distance function

Deep neural network as nonlinear distance function6

Generative Discriminative Dictionary-based

Data-intensive training Moderate training data Data-e�cient training
Hard to adapt Hard to adapt Very adaptable

6
Michael I Mandel, Young-Suk Cho, and Yuxuan Wang. Learning a concatenative resynthesis system for noise suppression.

In Proc. IEEE GlobalSIP, 2014
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Non-parametric synthesis for speech enhancement Deep neural network as nonlinear distance function

Train DNN on correctly and incorrectly paired chunks

Noise suppression
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Find optimal sequence of clean chunks

x = {xt}Tt=0 input sequence of noisy chunks

ẑ = {zt}Tt=0 best sequence of corresponding dictionary chunks

A�nity between clean and noisy chunks

Transition a�nity between clean chunks

ẑ = argmax
z

Y

t

p(zt = j | xt) p(zt = j | zt�1 = i)

= argmax
z

Y

i

g(zj , xi ) Tij
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Compare all pairs of noisy and clean chunks

D1
D2
D3
...

M1
M1
M1
...

DNN

Observed mixture

Clean dictionary

Sim
ilarity
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Compare all pairs of noisy and clean chunks

D1
D2
D3
...

M4
M4
M4
...

DNN

Observed mixture

Clean dictionary

Sim
ilarity
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Compare all pairs of noisy and clean chunks
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...

M5
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DNN

Observed mixture
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Sim
ilarity
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Standard Viterbi algorithm for to find optimal sequence
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Original “clean” speech
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Noisy speech
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Traditional mask-based separation
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Concatenative resynthesis output
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Original “clean” speech
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Subjective quality is high
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Subjective quality is high
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Subjective intelligibility is ok
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

Original clean speech
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

Reverberated, compressed, 20% packet loss
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

NMF-based bandwidth expansion output
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

Concatenative resynthesis output
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

Original clean speech
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

Subjective quality is high
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

Subjective quality is high
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Non-parametric synthesis for speech enhancement Audio super-resolution experiments

Subjective intelligibility is good
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Non-parametric synthesis for speech enhancement Summary
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Non-parametric synthesis for speech enhancement Summary

Summary

Concatenative synthesizer, DNN as noise-robust selection function

Instead of modifying noisy speech, replace it
completely eliminates noise, except for synthesis errors
produces high quality, natural-sounding speech

General robust supervised nonlinear signal mapping framework

Data-e�cient to train and adaptable to new talkers
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Non-parametric synthesis for speech enhancement Summary

Future applications

Generalize to audio-visual speech recognition

Label dictionary elements ahead of time to enable
noise-robust non-parametric speech recognition
noise-robust pitch tracking
noise-robust speaker identification

Incorporate language model into transition cost

Develop e�cient search mechanisms for large-vocabulary dictionaries
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Parametric synthesis for speech recognition Overview
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Parametric synthesis for speech recognition Overview

Mask-based source separation: Noisy
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Parametric synthesis for speech recognition Overview

Mask-based source separation: Masked
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Parametric synthesis for speech recognition Overview

Disrupts speech features: Noisy MFCCs

“He said such products would be marketed by other
companies with experience him at this month.”
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Parametric synthesis for speech recognition Overview

Disrupts speech features: Masked MFCCs

“He said such products would be marketed by other
companies with experience him at this month.”
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Parametric synthesis for speech recognition Overview

Disrupts speech features: Clean MFCCs

“He said such products would be marketed by other
companies with experience in that business.”
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Parametric synthesis for speech recognition Overview

Estimate better features using a strong prior model

“He said such products would be marketed by other
companies with experience in that business.”
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Parametric synthesis for speech recognition Overview

Our approach: Analysis-by-synthesis

Synthesize speech signal so that it
looks like the observation
looks like speech

Itakura-Saito divergence compares prediction with noisy observation

Recognizer gives likelihood of speech-ness

Both easy to optimize using gradient descent
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Parametric synthesis for speech recognition Overview

Speech recognizer includes lots of information

Large vocabulary continuous speech recognizer captures:

Acoustics of speech sounds

The e↵ect of neighboring speech sounds

Pronunciation of words

Order of words
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Parametric synthesis for speech recognition Algorithm
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Parametric synthesis for speech recognition Algorithm

Optimization over speech features

x: optimization state: MFCCs, ⇠10,000 dimensions

y(x): ASR features derived from x

M: mask provided a priori by another source separator

min
x

L(x;M) = min
x

n

(1� ↵) LI (x;M) + ↵ LH(y(x))
o

Total cost

Distance to noisy observation

Negative log likelihood under recognizer
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Parametric synthesis for speech recognition Algorithm

Analysis of audio meets resynthesis of MFCCs at mask
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Parametric synthesis for speech recognition Algorithm

LI (x;M): Distance to noisy observation

Resynthesize MFCCs to power spectrum, where mask was computed

Do mask-aware comparison in that domain: weighted Itakura-Saito
between resynthesis, S̃!t(x), and noisy observation, S
weighted by mask, M

LI (x;M) = DM(S k S̃) =
X

!,t

M!t

✓

S!t

S̃!t(x)
� log

S!t

S̃!t(x)
� 1

◆

Does not require modeling speech excitation

Numerically di↵erentiable with respect to x
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Parametric synthesis for speech recognition Algorithm

LH(y(x)): Likelihood under recognizer

Large vocabulary continuous speech recognizer
big hidden Markov model (HMM)
approximated by the lattice of likely paths

Closed form gradient with respect to x

Serves as a model of clean MFCC sequences
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Parametric synthesis for speech recognition Algorithm

Optimization

State space of approximately 13⇥ 800 ⇡10,000 dimensions

Quasi-Newton optimization, BFGS
gradient plus approximate second-order information

Closed form gradient of HMM likelihood
using a forward-backward algorithm

Numerical gradient of IS divergence
independent costs and gradients for each frame
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Parametric synthesis for speech recognition Results
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Parametric synthesis for speech recognition Results

Experiment

AURORA4 corpus
read Wall Street Journal sentences (5000 word vocabulary)
six environmental noise types
SNRs between 5 and 15 dB

Masks from ideal binary mask and estimated ratio mask7

7
Arun Narayanan and DeLiang Wang. Ideal ratio mask estimation using deep neural networks for robust speech

recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 7092–7096.
IEEE, May 2013
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Parametric synthesis for speech recognition Results

Recognition results

Word error rate (%) averaged across noise type

Mask Direct A-by-S

Noisy 30.94
Estimated 16.18 15.31
Oracle 14.38 13.62
Clean 9.54
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Parametric synthesis for speech recognition Results

Reconstruction results

Itakura-Saito divergence between resynthesized speech and original

Mask Direct A-by-S �

Noisy 272301
Estimated 276497 275224 �1273
Oracle 273006 272506 �500
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Parametric synthesis for speech recognition Results

Resynthesis gets closer to reliable regions
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Parametric synthesis for speech recognition Summary
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Parametric synthesis for speech recognition Summary

Summary

Use a full recognizer as a prior model for clean speech

Synthesize from MFCCs to the domain of the mask

Adjust synthesis of speech signal so that it
looks like the observation
looks like speech

Reduces recognition errors, distance to clean utterance
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Parametric synthesis for speech recognition Summary

Future directions

Apply to DNN-based acoustic models

Model speech excitation for full resynthesis of clean speech

Model multiple simultaneous speakers and estimate masks jointly

Combine with similar binaural model to include spatial clustering

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 71 / 73



Summary

Outline

1 Motivation: need for noise robustness

2 Non-parametric synthesis for speech enhancement

3 Parametric synthesis for speech recognition

4 Summary

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 72 / 73



Summary

Summary

Synthesizers provide strong prior information

Non-parametric synthesis models for high quality
learned nonlinear matching function for perceptually motivated features

Parametric synthesis models for e�cient representation
strong, di↵erentiable prior model of speech

Thanks!

Any questions?
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Parametric synthesis for separation

Outline

5 Parametric synthesis for separation
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Parametric synthesis for separation

Re-estimate mask using resynthesis: Original
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Parametric synthesis for separation

Re-estimate mask using resynthesis: Re-estimate
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