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Motivation: need for noise robustness Need for better mobile voice quality

Need for better mobile voice quality

@ There are now more mobile devices than humans on earth!
@ But recording conditions for these devices leave much to be desired

@ Can we recover high quality speech from noisy & degraded recordings?

1
http://www.independent.co.uk/life-style/gadgets-and-tech/news/
there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
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Need for better mobile voice quality
Why mobile voice quality stinks?
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2JefF Hecht. Why mobile voice quality still stinks—and how to fix it. /IEEE Spectrum, September 2014
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Need for better mobile voice quality
Why mobile voice quality stinks?
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(VIR B BT NG IE S Need for noise robust automatic speech recognition (ASR)

Conversational mobile software agents

55 minutes to work
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Source: Tom Vanleenhove
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Conversational mobile software agents need to work in

Source: Flickr user rickihuang
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Conversational mobile software agents need to work in

Source: Flickr user retorta_net

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 9/73



M I RITETECN IS ALEEM  Need for noise robust automatic speech recognition (ASR)

Conversational mobile software agents need to work in

Source: Flickr user Brian_Indrelunas
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(VIR B BT NG IE S Need for noise robust automatic speech recognition (ASR)

But automatic speech recognition doesn't work there3
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3Amit Juneja. A comparison of automatic and human speech recognition in null grammar. The Journal of the Acoustical
Society of America, 131(3):EL256-EL261, February 2012
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Main challenge

Speech is a rich signal, it requires rich modelsJ
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Motivation: need for noise robustness Main challenge

Main challenge

Speech is a rich signal, it requires rich modelsJ

@ Synthesis models are rich enough to represent almost all speech
@ Non-parametric synthesis models for high quality

e DNN as non-linear distance function
@ Parametric synthesis models for efficient representation

o efficient gradient-based optimization of input (not model)
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Non-parametric synthesis for speech enhancement Overview

Concatenative resynthesis for speech enhancement*>

@ Standard approaches try to modify noisy recordings
@ We instead resynthesize a clean version of the same speech

@ Should produce infinite suppression and high speech quality

4
Michael | Mandel, Young-Suk Cho, and Yuxuan Wang. Learning a concatenative resynthesis system for noise suppression.
In Proc. IEEE GlobalSIP, 2014

5Michael | Mandel and Young Suk Cho. Audio super-resolution using concatenative resynthesis. In Proc. IEEE WASPAA,
2015. To appear
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Non-parametric synthesis for speech enhancement Overview

Motivating example

@ Your phone records your voice in quiet, close-talk conditions
@ Uses those recordings to replace your voice in noisy, far-talk conditions

@ Resynthesizes your speech from previous high-quality recordings
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Non-parametric synthesis for speech enhancement Overview

Concatenative resynthesis

Use a large dictionary of ~200 ms “chunks” of audio
Learn DNN-based affinity between dictionary & mixture chunks

Perform concatenative synthesis of signal from dictionary

General robust supervised nonlinear signal mapping framework

Task Map from To

Noise suppression Noisy Clean
Audio super-resolution Reverberated, compressed Clean
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© Non-parametric synthesis for speech enhancement

@ Deep neural network as nonlinear distance function
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Non-parametric synthesis for speech enhancement Deep neural network as nonlinear distance function

Deep neural network as nonlinear distance function®

Generative Discriminative Dictionary-based

Data-intensive training Moderate training data Data-efficient training
Hard to adapt Hard to adapt Very adaptable

6Michae| | Mandel, Young-Suk Cho, and Yuxuan Wang. Learning a concatenative resynthesis system for noise suppression.
In Proc. IEEE GlobalSIP, 2014

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 19 /73



Non-parametric synthesis for speech enhancement Deep neural network as nonlinear distance function

Train DNN on correctly and incorrectly paired chunks

Noise suppression
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Non-parametric synthesis for speech enhancement Deep neural network as nonlinear distance function

Train DNN on correctly and incorrectly paired chunks

Audio super-resolution
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@ Using this DNN for speech enhancement
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Find optimal sequence of clean chunks

x = {x¢}]_, input sequence of noisy chunks

°
e z= {zt};rzo best sequence of corresponding dictionary chunks

N>
|

= argmax [ | p(ze =j|x) plze=jlz1=1)
z
t

= argmax zi,x;) Tj
gz Hg(J i) T
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Find optimal sequence of clean chunks

x = {x¢}]_, input sequence of noisy chunks

°
e z= {zt};rzo best sequence of corresponding dictionary chunks

o Affinity between clean and noisy chunks

z= argmaxH p(ze = jlxe) p(ze =jlze—1=1)
z
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Find optimal sequence of clean chunks

o x = {x;}]_, input sequence of noisy chunks

e z= {zt};rzo best sequence of corresponding dictionary chunks
o Affinity between clean and noisy chunks

°

Transition affinity between clean chunks \
z= argmaxH p(ze = jlxe) p(ze =jlze—1=1)
z
t

= argmax zi,x;) Tj
gz Hg(J i) T
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Compare all pairs of noisy and clean chunks
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Non-parametric synthesis for speech enhancement Using this DNN for speech enhancement

Standard Viterbi algorithm for to find optimal sequence

MN

MN
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© Non-parametric synthesis for speech enhancement

@ Noise suppression experiments
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Q Traditional mask-based separation
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Non-parametric synthesis for speech enhancement Noise suppression experiments

Q Concatenative resynthesis output

Frequency (kHz)

02 04 06 0.8 10 12 14 16 18 20
Time (s)

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 30/ 73


file:///Users/craffel/Downloads/globalsip14_pics/specs/06-nrCr.wav

N Original “clean” speech
riginal Cl€ean speec

Frequency (kHz)

1.2
Time (s)

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 31/ 73


file:///Users/craffel/Downloads/globalsip14_pics/specs/03-nrClean.wav

T e
Subjective quality is high
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Noise suppression experiments
Subjective quality is high

Cleanf| v  Speech —‘7—* EN
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Noise suppression experiments
Subjective intelligibility is ok
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@ Audio super-resolution experiments
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Audio super-resolution experiments
\ Original clean speech

Frequency (kHz)
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file:///Users/craffel/Downloads/msld15_pics/lbwr3a_Clean.wav

parametric synthesis for speech enh Audio super-resolution experiments

Q Reverberated, compressed, 20% packet loss
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file:///Users/craffel/Downloads/msld15_pics/lbwr3a_RevOpusL20.wav

Audio super-resolution experiments
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file:///Users/craffel/Downloads/msld15_pics/lbwr3a_RevOpusL20Nmf.wav

parametric synthesis for speech enhancement Audio super-resolution experiments
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Audio super-resolution experiments
\ Original clean speech
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Audio super-resolution experiments
Subjective quality is high
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Subjective intelligibility is good
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© Non-parametric synthesis for speech enhancement

@ Summary
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Non-parametric synthesis for speech enhancement Summary

Summary
@ Concatenative synthesizer, DNN as noise-robust selection function
@ Instead of modifying noisy speech, replace it
e completely eliminates noise, except for synthesis errors
e produces high quality, natural-sounding speech
@ General robust supervised nonlinear signal mapping framework
o Data-efficient to train and adaptable to new talkers
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Non-parametric synthesis for speech enhancement Summary

Future applications

Generalize to audio-visual speech recognition

Label dictionary elements ahead of time to enable
@ noise-robust non-parametric speech recognition
@ noise-robust pitch tracking
@ noise-robust speaker identification

Incorporate language model into transition cost

Develop efficient search mechanisms for large-vocabulary dictionaries
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© Parametric synthesis for speech recognition
@ Overview
@ Algorithm
@ Results
@ Summary
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© Parametric synthesis for speech recognition
@ Overview
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Parametric synthesis for speech recognition Overview

Mask-based source separation: Noisy )
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ey
Mask-based source separation: Masked \
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Disrupts speech features: Noisy MFCCs
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Parametric synthesis for speech recognition Overview

Disrupts speech features: Masked MFCCs
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Disrupts speech features: Clean MFCCs

Clean Cepstrum
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ey
Estimate better features using a strong prior model
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Overview
Our approach: Analysis-by-synthesis

Synthesize speech signal so that it

o looks like the observation
o looks like speech

Itakura-Saito divergence compares prediction with noisy observation

Recognizer gives likelihood of speech-ness

Both easy to optimize using gradient descent
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Parametric synthesis for speech recognition Overview

Speech recognizer includes lots of information

Large vocabulary continuous speech recognizer captures: J

Acoustics of speech sounds
The effect of neighboring speech sounds
Pronunciation of words

Order of words
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Parametric synthesis for speech recognition Algorithm
Outline

© Parametric synthesis for speech recognition

@ Algorithm
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Parametric synthesis for speech recognition Algorithm

Optimization over speech features

@ x: optimization state: MFCCs, ~10,000 dimensions
@ y(x): ASR features derived from x

@ M: mask provided a priori by another source separator

X

@ Total cost /

min L(x; M) = mxin {(1 —a) Li(x; M) + o Ly(y(x)) }
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Parametric synthesis for speech recognition Algorithm

Optimization over speech features

x: optimization state: MFCCs, ~10,000 dimensions

y(x): ASR features derived from x

M: mask provided a priori by another source separator

min L(x; M) = min {(1 —a) Li(x; M) +a Ly(y(x)) }

Total cost j

Distance to noisy observation
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Parametric synthesis for speech recognition Algorithm

Optimization over speech features

x: optimization state: MFCCs, ~10,000 dimensions
y(x): ASR features derived from x

M: mask provided a priori by another source separator

min L(x; M) —m|n l—a Li(x; M) + o Lu(y

X
Total cost j /
Distance to noisy observation
Negative log likelihood under recognizer
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Parametric esis for speech recognition Algorithm

Analysis of audio meets resynthesis of MFCCs at mask

777777777777777 Compressed | Compress Auditory Warp Power Audio
Aud-Spectrum| ~ Amplitude Spectrum requency Spectrum Filterbank
Weighted cgparison (c) Weighted conparison (b) ~ Weighted comparison (a) Analysis

DC
| MFCC: x | Cepstrum} Compressed | Decompres Auditory Un-warp
: - Amplitud Fi -
Spectrum Aud-Spectrum mplitude Spectrum requency Spectrum Synthesis
Lifter, Delta and Mean-Var | Normalized [ _P(y(x))
Double-delta MFCC-39 Normalize MFCC-39 4
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Parametric synthesis for speech recognition Algorithm

L;(x; M): Distance to noisy observation

Resynthesize MFCCs to power spectrum, where mask was computed
@ Do mask-aware comparison in that domain: weighted ltakura-Saito

o between resynthesis, S,,:(x), and noisy observation, S
o weighted by mask, M

S
Li(x; M) =Dy(S|5) = ZMM< ) — log z (‘;) - 1>
wt wt

Does not require modeling speech excitation

@ Numerically differentiable with respect to x
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Algorithm
Lu(y(x)): Likelihood under recognizer

@ Large vocabulary continuous speech recognizer

o big hidden Markov model (HMM)
e approximated by the lattice of likely paths

@ Closed form gradient with respect to x

@ Serves as a model of clean MFCC sequences
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Parametric synthesis for speech recognition Algorithm

Optimization

State space of approximately 13 x 800 ~10,000 dimensions

Quasi-Newton optimization, BFGS
e gradient plus approximate second-order information
Closed form gradient of HMM likelihood

e using a forward-backward algorithm

@ Numerical gradient of IS divergence
e independent costs and gradients for each frame

Michael Mandel (Brooklyn College) Analysis-by-synthesis Sept 8, 2015 60 / 73



Parametric synthesis for speech recognition Results

© Parametric synthesis for speech recognition

@ Results
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Parametric synthesis for speech recognition Results

Experiment

o AURORA4 corpus

o read Wall Street Journal sentences (5000 word vocabulary)
@ six environmental noise types
o SNRs between 5 and 15 dB

@ Masks from ideal binary mask and estimated ratio mask’

7Arun Narayanan and Deliang Wang. Ideal ratio mask estimation using deep neural networks for robust speech
recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 7092-7096.
IEEE, May 2013
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Parametric synthesis for speech recognition Results

Recognition results

@ Word error rate (%) averaged across noise type

Mask Direct A-by-S
Noisy 30.94
Estimated 16.18 15.31
Oracle 1438 13.62
Clean 9.54
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Parametric synthesis for speech recognition Results

Reconstruction results

o Itakura-Saito divergence between resynthesized speech and original

Mask Direct  A-by-S A

Noisy 272301
Estimated 276497 275224 —1273
Oracle 273006 272506 —500
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Parametric synthesis for speech recognition Results

Resynthesis gets closer to reliable regions
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Parametric synthesis for speech recognition Results
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Parametric synthesis for speech recognition Results

Resynthesis gets closer to reliable regions
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Parametric synthesis for speech recognition Summary
QOutline

© Parametric synthesis for speech recognition

@ Summary
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Parametric synthesis for speech recognition Summary

Summary

Use a full recognizer as a prior model for clean speech
Synthesize from MFCCs to the domain of the mask

Adjust synthesis of speech signal so that it

o looks like the observation
e looks like speech

Reduces recognition errors, distance to clean utterance
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Summary
Future directions

@ Apply to DNN-based acoustic models
@ Model speech excitation for full resynthesis of clean speech
@ Model multiple simultaneous speakers and estimate masks jointly

@ Combine with similar binaural model to include spatial clustering
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Outline

O Summary
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Summary

@ Synthesizers provide strong prior information
@ Non-parametric synthesis models for high quality

o learned nonlinear matching function for perceptually motivated features
@ Parametric synthesis models for efficient representation

e strong, differentiable prior model of speech
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Summary

@ Synthesizers provide strong prior information
@ Non-parametric synthesis models for high quality

o learned nonlinear matching function for perceptually motivated features
@ Parametric synthesis models for efficient representation

e strong, differentiable prior model of speech

Thanks!
Any questions? \
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© Parametric synthesis for separation
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Parametric synthesis for separation

Re-estimate mask using resynthesis: Original \
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Parametric synthesis for separation

Re-estimate mask using resynthesis: Re-estimate Q
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