Conditional Modeling For Fun and Profit

Kyle Kastner

Université de Montréal - MILA Intern - IBM Watson @ Yorktown Heights

Deep Learning, Simple Concepts

- Universal function approximators
- Learn the features
- Desire hierarchy in learned features
 - y = h(g(f(x)))
 - {h, g, f} are nonlinear functions
- Classification

• Learn p(y | x) = h(g(f(x)))

Basic Anatomy

- Weights (W, V)
- Biases (**b**, **c**)

- Morph features using non-linear functions e.g.
 - o layer_1_out = tanh(dot(X, W) + b)
 - o layer_2_out = tanh(dot(layer_1_out, V) + c) ...
- Backpropagation to "step" values of W,V,b,c

Mixture Density Networks

- What are sufficient statistics?
 - Describe an instance of a distribution
 - Gaussian with mean *u*, variance *s*
 - Bernoulli with probability *p*
- Ties to neural networks
 - Arbitrary output parameters

- Can we interpret parameters in a layer as sufficient statistics? YES!
- ^[3, 1] Cost / regularization forces this relationship

Parameterizing Distributions

- sigmoid -> Bernoulli
- softmax -> Multinomial
- linear, linear -> Gaussian with mean, log_var
- softmax, linear, linear -> Gaussian mixture
- Can combine with recurrence
 - Learned, dynamic distributions over sequences
 - Incredibly powerful

[3, 1, 4, 5, 6, 7, 8, 9]

Latent Factor Generative Models

- Auto-Encoding Variational Bayes
 D. Kingma and M. Welling
 - Model known as Variational Autoencoder (VAE)
 - See also Stochastic Backpropagation and

Approximate Inference in Deep Generative Models Rezende, Mohamed, Wierstra

ENCODER [11, 12, 13] DECODER

A Bit About VAE

- Want to do latent variable modeling
- Don't want to do MCMC or EM
- Sampling Z blocks gradient
- Reparameterization trick
 - Exact soln intractable for complex transforms (like NN)
 - Lower bound on likelihood with KL divergence
 - N(mu, sigma) -> mu + sigma * N(0, 1)
 - Like mixture density networks, but in the middle
 - Now trainable by backprop

[11, 12, 13]

Taking The Wheel

Specifics of MNIST digits Writing style and class \bigcirc Traits are semi-independent \bigcirc Can encode this in the model • y -> softmax classifier (\sim y is sample) • $p(z \mid x, y), p(z \mid x, \sim y)$ or $p(z \mid x, f(x))$ Fully conditional version of M2

 Semi-Supervised Learning with Deep Generative [13, 14]
 Models, Kingma, Rezende, Mohamed, Welling

Conditioning, Visually

[13, 14]

 8
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 7
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 7
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 3
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 4
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 8
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

In Practice...

- Conditioning is a strong signal
 p(x_hat | z) vs. p(x_hat | z, y)
- Can give control or add prior knowledge
- Classification is an even stronger form
 - Prediction is learned by maximizing p(y | x)!
 - In classification, don't worry about forming a useful z

Conditioning Feedforward

- Concatenate features
 - concatenate((X_train, conditioning), axis=1)
 - p(y | X_1 ... X_n, L_1 ... L_n)
- One hot label L (scikit-learn label_binarize)
- Could also be real valued
- Concat followed with multiple layers to "mix"

[1]

Convolution and Recurrence

CEEP)

- Exploit structure and prior knowledge
 - Parameter sharing is strong regularization
- Convolution exploit locality
 - $\circ \quad p(y \mid X_{i} n) \dots X_{i} + n) * p(y \mid X_{i} + 1 n) \dots X_{i} + 1 + n))\dots$
 - A *learned* filter over a fixed 1D or 2D window
 - Window slides over all input, updates filter
- Recurrence exploit sequential information
 - $p(y | X_1 ... X_t) = p(y | X_{<=t})$ can be seen as:

○ ~ p(y | X_1) * p(y | X_2, X_1) * p(y | X_3, X_2, X_1) ...

[1, 4, 5, 6, 7, 8, 9]

More on Recurrence

- Hidden state (s_t) encodes sequence info
 p(X_<=t) (in s_t) is compressed representation of X
- Recurrence similar to
 - Hidden Markov Model (HMM)
 - Kalman Filter (KF, EKF, UKF)

How-To MDN + RNN

 Generating Sequences with Recurrent Neural Networks Alex Graves

- Handwriting
 - Pen up/down and relative position per timestep
- Vocoder representation of speech
- [3, 4] Voiced/unvoiced and MFCC per timestep

How-To Continued

Conditional model

- Adds input attention (more on this later)
- Gaussian per timestep over one hot text
- p(bernoulli, GMM | X_t, previous state, focused text)
- This gives *control* of the output via input text

http://www.cs.toronto.edu/~graves/handwriting.html https://www.youtube.com/watch?v=-yX1SYeDHbg&t=43m30s

Similar Approaches

- RNN with sigmoid output
 - ALICE
- RNN with softmax
 - RNN-LM
- RNN-RBM, RNN-NADE

[3, 1, 4, 5, 6, 7, 8, 9]

Research Questions

- Possible Issues
 - Prosody/style are not smooth over time
 - Deep network, but still shallow latent variables
 - Vocoder is a highly engineered representation
- How can we fix these problems?
 First, a bit about conditioning in RNNs

Conditioning In Recurrent Networks

- RNNs model p(X_t | X_<t)</p>
- Initial hidden state can condition
 p(X t | X <t, c) where c is init. hidden state (context)
- Condition by concatenating in feedforward
 - Before recurrence or after
- Can do all of the above

[1, 4, 15, 16, 17]

Conditioning with a Sequence

- RNN outputting Gaussian parameters over seq
 - Seen in Generating Sequences
- Use an RNN to compress
 - Hidden state encodes p(X_<=t)
 - Project into init hidden and ff
 - Now have p(y_t | y_<t, X_<=t)
 - Known as RNN Encode-Decode
 - Cho et al

Distributing The Representation

- Distribute context, Bahdanau et al
- Bidirectional RNN
 - $p(X_i | X_{<i}, X_{>i})$ for i in t
 - Needs whole sequence
 - But sometimes this is fine
- Soft attention over hiddens
- Choose what is important

Previously, on FOX...

RNN-GMM Issues

- Prosody/style are not smooth over time
- Deep network, but still shallow latent variables
- Vocoder is a highly engineered representation
- How can we try to fix these problems?
 - Distributed latent representation for Z
 - Use modified VAE to make latents deep
 - Work on raw timeseries inputs
 - Extreme approach, but proves a point

Existing Approaches

- VRAE, Z_t independent
- STORN, Z_t independent

- DRAW, Z_t loosely dependent via canvas
- No large scale real-valued experiments
 - VRAE, no real valued experiment
 - STORN, real valued experiment was small
 - DRAW, real values weren't sequences

Variational RNN

Speech

- Complex but structured noise driven by mechanics
- Ideal latent factors include these mechanics
- Z_<t should affect Z_t and h_t
- Use a recurrent prior

Primary Functions $p(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T}) = \prod p(\mathbf{x}_t \mid \mathbf{z}_{\leq t}, \mathbf{x}_{< t}) p(\mathbf{z}_t \mid \mathbf{x}_{< t}, \mathbf{z}_{< t}).$ t=1 $\mathbf{z}_t \mid \mathbf{x}_t \sim \mathcal{N}(\boldsymbol{\mu}_{z,t}, \operatorname{diag}(\boldsymbol{\sigma}_{z,t}^2))$, where $[\boldsymbol{\mu}_{z,t}, \boldsymbol{\sigma}_{z,t}] = \varphi_{\tau}^{\operatorname{enc}}(\varphi_{\tau}^{\mathbf{x}}(\mathbf{x}_t), \mathbf{h}_{t-1})$ $\mathbf{x}_t \mid \mathbf{z}_t \sim \mathcal{N}(\boldsymbol{\mu}_{x,t}, \operatorname{diag}(\boldsymbol{\sigma}_{x,t}^2))$, where $[\boldsymbol{\mu}_{x,t}, \boldsymbol{\sigma}_{x,t}] = \varphi_{\tau}^{\operatorname{dec}}(\varphi_{\tau}^{\mathbf{z}}(\mathbf{z}_t), \mathbf{h}_{t-1})$ $\mathbf{z}_t \sim \mathcal{N}(\boldsymbol{\mu}_{0,t}, \operatorname{diag}(\boldsymbol{\sigma}_{0,t}^2))$, where $[\boldsymbol{\mu}_{0,t}, \boldsymbol{\sigma}_{0,t}] = \varphi_{\tau}^{\operatorname{prior}}(\mathbf{h}_{t-1})$ $\sum -\mathrm{KL}(q(\mathbf{z}_t \mid \mathbf{x}_{\leq t}, \mathbf{z}_{< t}) \| p(\mathbf{z}_t \mid \mathbf{x}_{< t}, \mathbf{z}_{< t}))$ $\mathbf{h}_t = f_\theta \left(\varphi_\tau^{\mathbf{x}}(\mathbf{x}_t), \varphi_\tau^{\mathbf{z}}(\mathbf{z}_t), \mathbf{h}_{t-1} \right)$ t=1 $+\mathbb{E}_{q(\mathbf{z}_t | \mathbf{x}_{\leq t}, \mathbf{z}_{\leq t})} \left[\log(p(\mathbf{x}_t | \mathbf{z}_{\leq t}, \mathbf{x}_{< t})) \right].$ [15]

Prior

 x_t

- Used for KL divergence
- Fixed in VAE to N(0, 1)
- Here it is learned
- Instead of "be simple" (as in VAE), this says "be consistent"

$$\sum_{t=1} -\mathrm{KL}(q(\mathbf{z}_t \mid \mathbf{x}_{\leq t}, \mathbf{z}_{< t}) \| p(\mathbf{z}_t \mid \mathbf{x}_{< t}, \mathbf{z}_{< t}))$$

+
$$\mathbb{E}_{q(\mathbf{z}_t | \mathbf{x}_{\leq t}, \mathbf{z}_{< t})} [\log(p(\mathbf{x}_t | \mathbf{z}_{\leq t}, \mathbf{x}_{< t}))].$$

 $\mathbf{z}_t \sim \mathcal{N}(\boldsymbol{\mu}_{0,t}, ext{diag}(\boldsymbol{\sigma}_{0,t}^2))$, where $[\boldsymbol{\mu}_{0,t}, \boldsymbol{\sigma}_{0,t}] = arphi_{ au}^{ ext{prior}}(\mathbf{h}_{t-1})$

Inference (encode)

Previous hidden state • h t-1 Data • X t Hidden state information • z_<t o X <t

$$\mathbf{h}_{t} = f_{\theta} \left(\varphi_{\tau}^{\mathbf{x}}(\mathbf{x}_{t}), \varphi_{\tau}^{\mathbf{z}}(\mathbf{z}_{t}), \mathbf{h}_{t-1} \right)$$

 $\mathbf{z}_t \mid \mathbf{x}_t \sim \mathcal{N}(\boldsymbol{\mu}_{z,t}, \operatorname{diag}(\boldsymbol{\sigma}_{z,t}^2))$, where $[\boldsymbol{\mu}_{z,t}, \boldsymbol{\sigma}_{z,t}] = \varphi_{\tau}^{\operatorname{enc}}(\varphi_{\tau}^{\mathbf{x}}(\mathbf{x}_t), \mathbf{h}_{t-1})$

Generation (decode)

Generate based on

h_t-1 has z_<t, X_<t</p>

$$\mathbf{h}_{t} = f_{\theta} \left(\varphi_{\tau}^{\mathbf{x}}(\mathbf{x}_{t}), \varphi_{\tau}^{\mathbf{z}}(\mathbf{z}_{t}), \mathbf{h}_{t-1} \right)$$

 $\mathbf{x}_t \mid \mathbf{z}_t \sim \mathcal{N}(\boldsymbol{\mu}_{x,t}, \operatorname{diag}(\boldsymbol{\sigma}_{x,t}^2))$, where $[\boldsymbol{\mu}_{x,t}, \boldsymbol{\sigma}_{x,t}] = \varphi_{\tau}^{\operatorname{dec}}(\varphi_{\tau}^{\mathbf{z}}(\mathbf{z}_t), \mathbf{h}_{t-1})$ ^[15]

Recurrence

- Just a regular RNN
- Input projection is a VAE
- Can use LSTM, GRU, others

$$\mathbf{\hat{f}}_{x_t} = f_{\theta} \left(\varphi_{\tau}^{\mathbf{x}}(\mathbf{x}_t), \varphi_{\tau}^{\mathbf{z}}(\mathbf{z}_t), \mathbf{h}_{t-1} \right)$$

$$\mathbf{\hat{f}}_{t}_{T}, \mathbf{z}_{\leq T} = \prod_{t=1}^{T} p(\mathbf{x}_t \mid \mathbf{z}_{\leq t}, \mathbf{x}_{< t}) p(\mathbf{z}_t \mid \mathbf{x}_{< t}, \mathbf{z}_{< t}).$$

Learned Filters

[15]

(b) $\varphi_{\tau}^{\text{dec}}$

Final Thoughts on VRNN

- Empirically, structured Z seems to help
 - Keep style consistent
 - Predict very correlated data, like raw timeseries
 - Also works well for unconditional handwriting

Takeaways and Opinions

- Can use deep learning like graphical modeling
 - Different tools, same conceptual idea
 - Conditional probability modeling is *key*
- Put knowledge in model structure, not features
- Let features be *learned* from data
- Use conditioning to control or constrain

@kastnerkyle

Slides will be uploaded to https://speakerdeck.com/kastnerkyle

References (1)

[1] Y. Bengio, I. Goodfellow, A. Courville. "Deep Learning", in preparation for MIT Press, 2015. <u>http://www.iro.umontreal.ca/~bengioy/dlbook/</u>

[2] D. Rumelhart, G. Hinton, R. Williams. "Learning representations by back-propagating errors", Nature 323 (6088): 533–536, 1986. <u>http://www.iro.</u> <u>umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf</u>

[3] C. Bishop. "Mixture Density Networks", 1994. http://research.microsoft.com/en-us/um/people/cmbishop/downloads/Bishop-NCRG-94-004.ps

[4] A. Graves. "Generating Sequences With Recurrent Neural Networks", 2013. http://arxiv.org/abs/1308.0850

[5] D. Eck, J. Schmidhuber. "Finding Temporal Structure In Music: Blues Improvisation with LSTM Recurrent Networks". Neural Networks for Signal Processing, 2002. <u>ftp://ftp.idsia.ch/pub/juergen/2002_ieee.pdf</u>

[6] A. Brandmaier. "ALICE: An LSTM Inspired Composition Experiment". 2008.

[7] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur. "Recurrent Neural Network Based Language Model". Interspeech 2010. <u>http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf</u>

[9] N. Boulanger-Lewandowski, Y. Bengio, P. Vincent. "Modeling Temporal Dependencies in High-Dimensional Sequences: Application To Polyphonic Music Generation and Transcription". ICML 2012. <u>http://www-etud.iro.umontreal.ca/~boulanni/icml2012</u>

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, 1998. <u>http://yann.lecun.com/exdb/mnist/</u>

[11] D. Kingma, M. Welling. "Auto-encoding Variational Bayes". ICLR 2014. http://arxiv.org/abs/1312.6114

[12] D. Rezende, S. Mohamed, D. Wierstra. "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". ICML 2014. <u>http:</u> //arxiv.org/abs/1401.4082

References (2)

[13] A. Courville. "Course notes for Variational Autoencoders". IFT6266H15. <u>https://ift6266h15.files.wordpress.com/2015/04/20_vae.pdf</u>

[14] D. Kingma, D. Rezende, s. Mohamed, M. Welling. "Semi-supervised Learning With Deep Generative Models". NIPS 2014. <u>http://arxiv.org/abs/1406.5298</u>

[15] J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, Y. Bengio. "A Stochastic Latent Variable Model for Sequential Data". <u>http://arxiv.org/abs/1506.</u> 02216

[16] K. Cho, B. Merrienboer, C. Gulchere, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation". EMNLP 2014. <u>http://arxiv.org/abs/1406.1078</u>

[17] D. Bahdanau, K. Cho, Y. Bengio. "Neural Machine Translation By Jointly Learning To Align and Translate". ICLR 2015. <u>http://arxiv.org/abs/1409.</u> 0473

[18] K. Gregor, I. Danihelka, A. Graves, D. Rezende, D. Wierstra. "DRAW: Directed Recurrent Attention Writer". http://arxiv.org/abs/1502.04623

[19] J. Bayer, C. Osendorfer. "Learning Stochastic Recurrent Networks". http://arxiv.org/abs/1411.7610

[20] O. Fabius, J. van Amersmoot. "Variational Recurrent Auto-Encoders". http://arxiv.org/abs/1412.6581

More on Convolution

- Define size of feature map and how many
 - Similar to output size of feedforward layer

Parameter sharing

- Small filter moves over entire input
- Believe local statistics consistent over regions
- Enforced by parameter sharing
- Condition by concatenating
 - Along "channel" axis

http://arxiv.org/abs/1406.2283

Image

4	

Convolved Feature