Deep learning and feature learning for MIR

Sander Dieleman – July 23rd, 2014

PhD student at Ghent University

Working on audio-based music classification, recommendation, ...

Graduating in December 2014

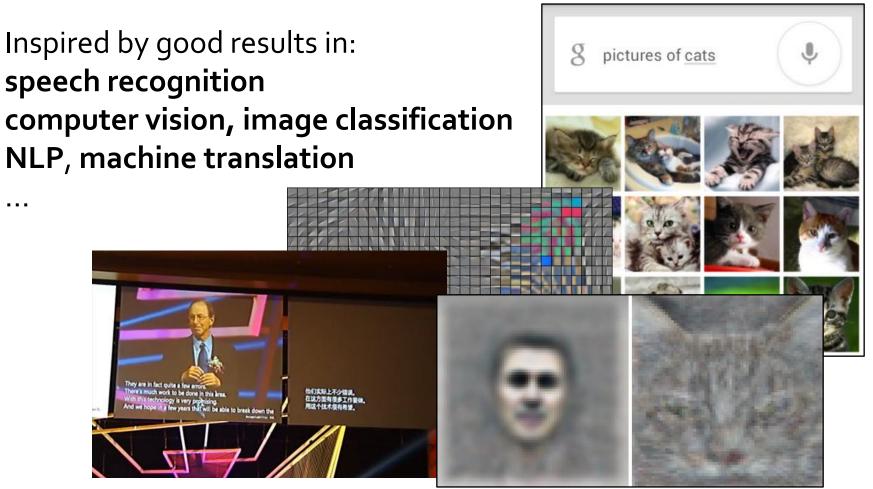
Currently interning at Spotify in NYC

http://benanne.github.io
http://github.com/benanne
http://reslab.elis.ugent.be
sanderdieleman@gmail.com

Multiscale music audio feature learning
 Deep content-based music recommendation
 End-to-end learning for music audio
 Transfer learning by supervised pre-training
 More music recommendation + demo

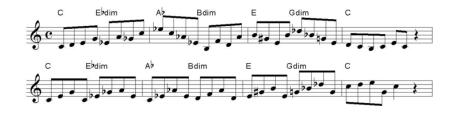
I. Multiscale music audio feature learning

Feature learning is receiving more attention from the MIR community



Music exhibits structure on many different timescales

Musical form



Themes

 \sim

Motifs

Periodic waveforms

K-means for feature learning: cluster centers are features

Spherical K-means:

means lie on the unit sphere, have a unit L2 norm

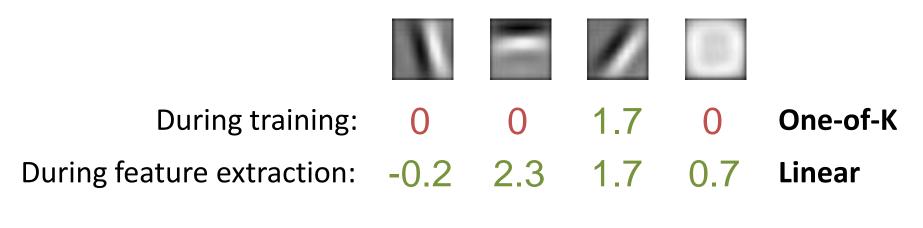
+ conceptually very **simple**

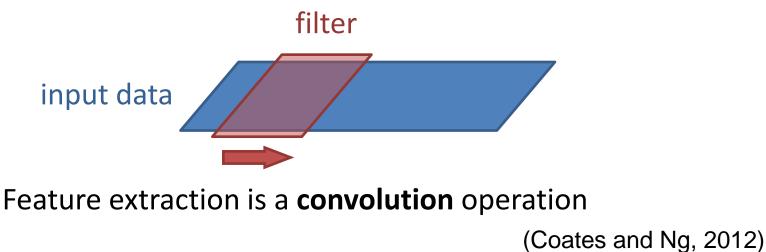
+ only one parameter to tune: number of means

+ orders of magnitude faster than RBMs, autoencoders, sparse coding

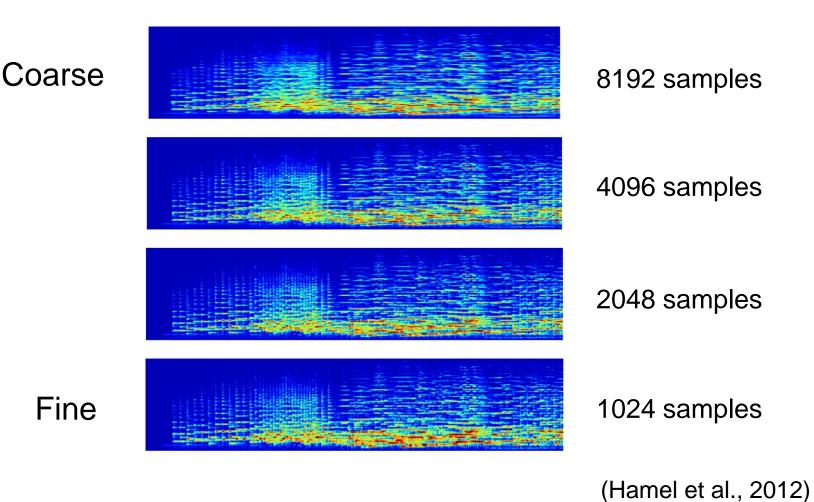
(Coates and Ng, 2012)

Spherical K-means features work well with **linear feature encoding**

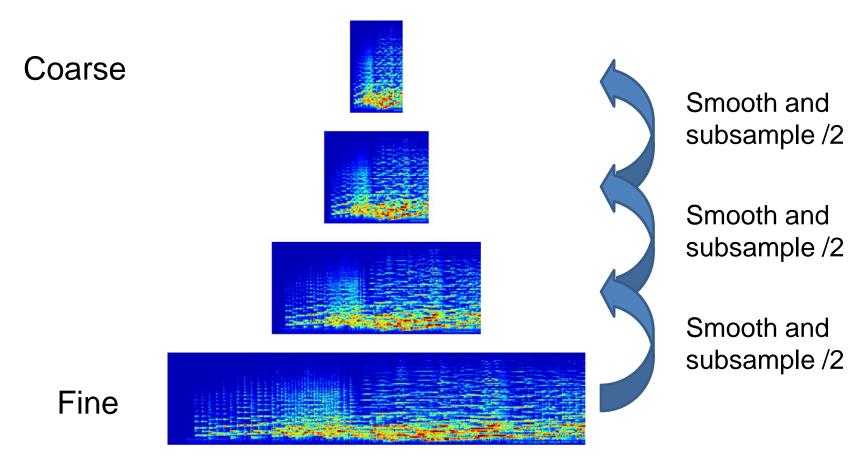




Multiresolution spectrograms: different window sizes



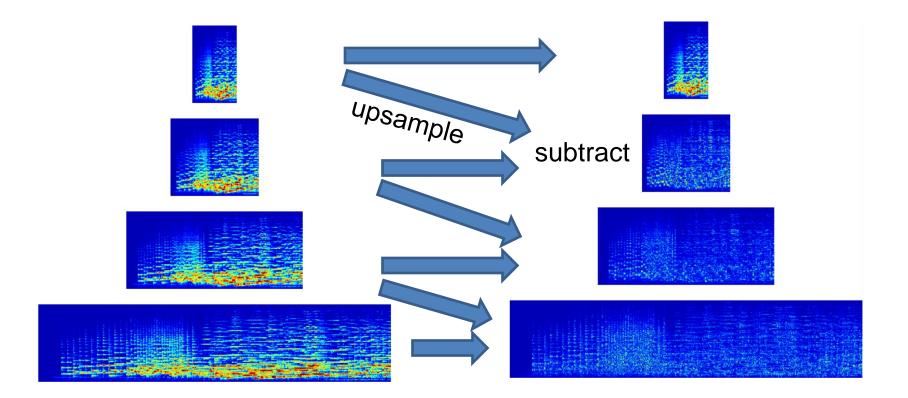
Gaussian pyramid: repeated smoothing and subsampling



Deep learning and feature learning for MIR

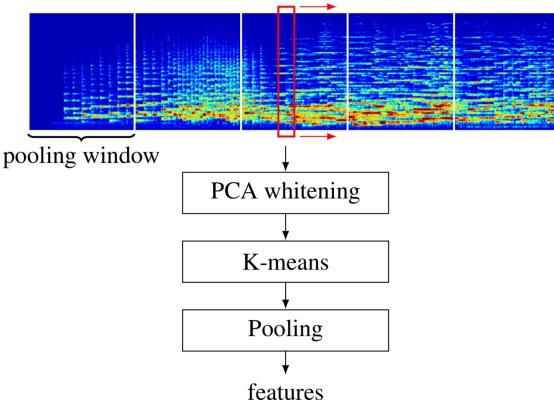
(Burt and Adelson, 1983)

Laplacian pyramid: difference between levels of the Gaussian pyramid



(Burt and Adelson, 1983)

Our approach: feature learning on multiple timescales



Task: **tag prediction** on the Magnatagatune dataset

25863 clips of 29 seconds, annotated with 188 tags

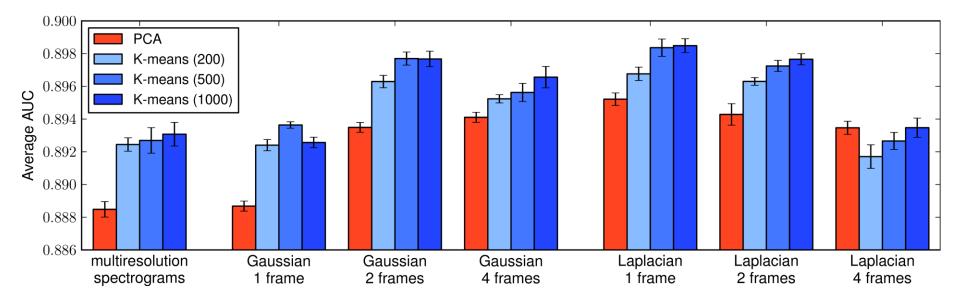
Tags are versatile: genre, tempo, instrumentation, dynamics, .

We trained a **multilayer perceptron** (MLP):

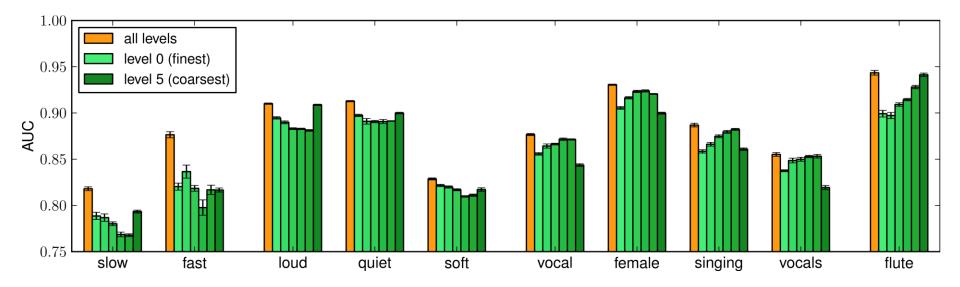
- 1000 rectified linear hidden units
- cross-entropy objective
- predict 50 most common tags

(Law and von Ahn, 2009)

Results: **tag prediction** on the Magnatagatune dataset



Results: importance of each timescale for different types of tags



Learning features at **multiple timescales** improves performance over single-timescale approaches

Spherical K-means features consistently improve performance

II. Deep content-based music recommendation

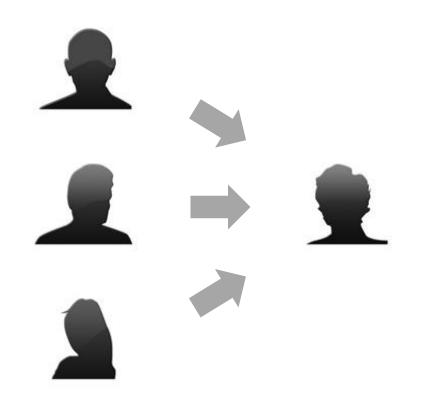
Music recommendation is becoming an increasingly relevant problem

Shift to digital distribution

The **long tail** is particularly long for music

long tail

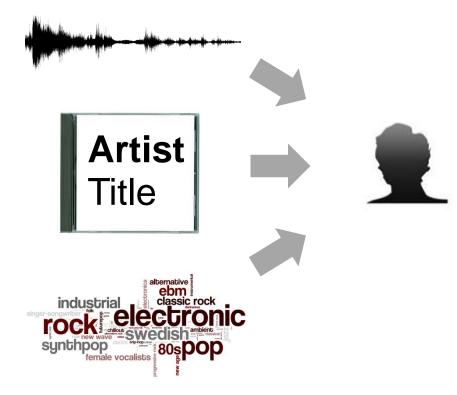
Collaborative filtering: use listening patterns for recommendation



+ good performance- cold start problem

many **niche items** that only appeal to a small audience

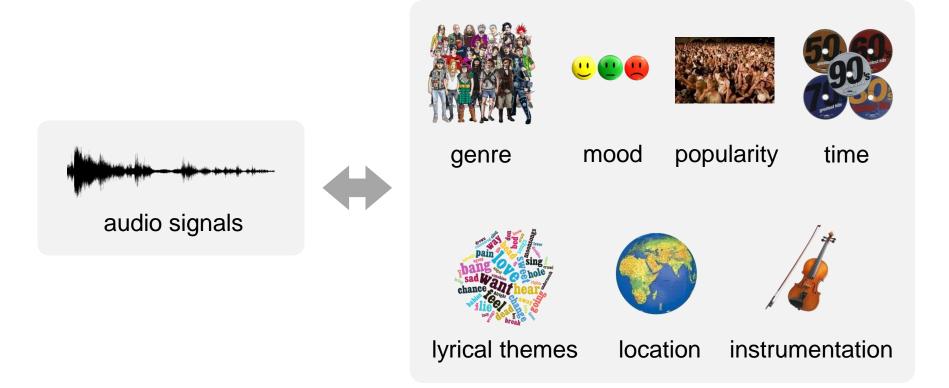
Content-based: use audio content and/or metadata for recommendation



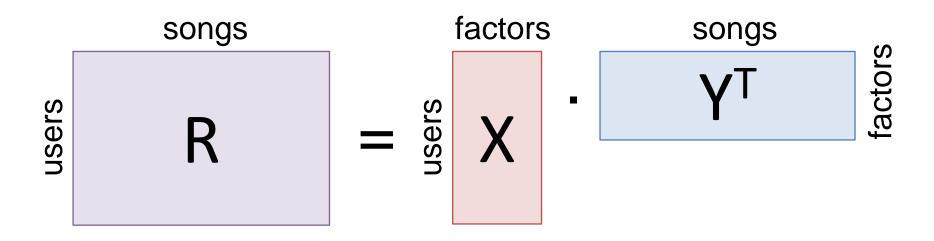
worse performance+ no usage data required

allows for all items to be recommended regardless of popularity

There is a large **semantic gap** between audio signals and listener preference



Matrix Factorization: model listening data as a product of latent factors



listening data play counts user profiles latent factors song profiles latent factors

Deep learning and feature learning for MIR

Weighted Matrix Factorization: latent factor model for implicit feedback data

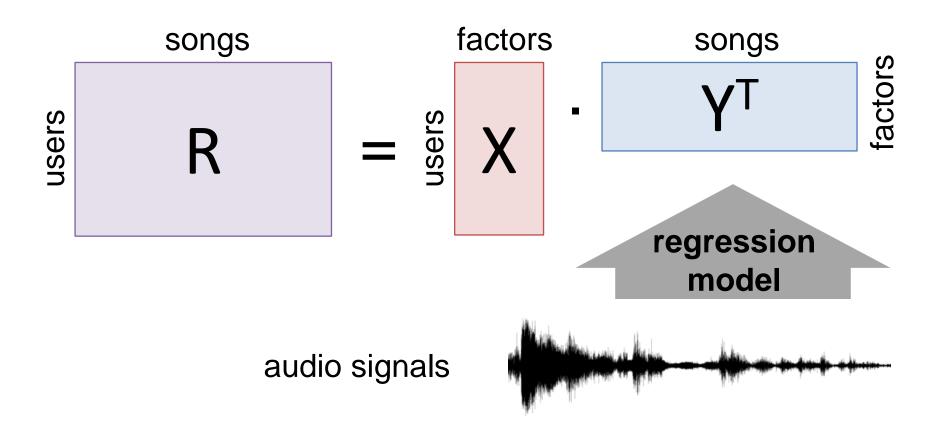
Play count > 0 is a **strong positive signal** Play count = 0 is a **weak negative signal**

WMF uses a **confidence matrix** to emphasize positive signals

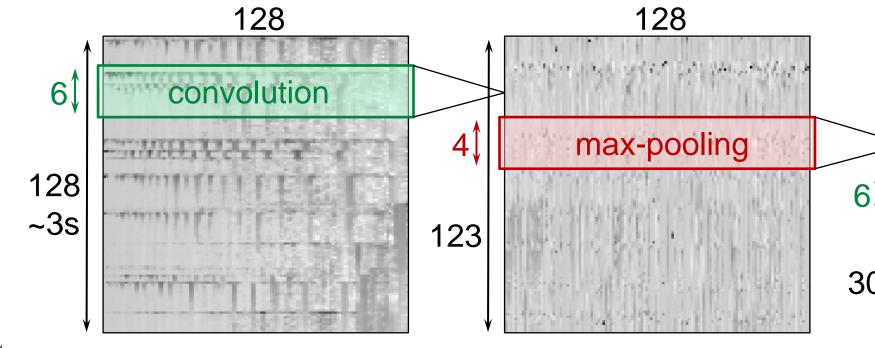
$$\min_{x_{*}, y_{*}} \frac{1}{2} \sum_{u, i} c_{ui} \left(p_{ui} - x_{u}^{T} y_{i} \right)^{2}$$

Hu et al., ICDM 2008

We **predict latent factors** from music audio signals



Deep learning approach: convolutional neural network



Spectrograms

time

The **Million Song Dataset** provides metadata for 1,000,000 songs

+ Echo Nest Taste profile subset Listening data from 1.1m users for 380k songs

+ 7digital Raw audio clips (over 99% of dataset)



Bertin-Mahieux et al., ISMIR 2011

Quantitative evaluation: music recommendation performance

Subset (9330 songs, 20000 users)

Model	mAP@500	AUC
Metric learning to rank	0.01801	0.60608
Linear regression	0.02389	0.63518
Multilayer perceptron	0.02536	0.64611
CNN with MSE	0.05016	0.70987
CNN with WPE	0.04323	0.70101

Quantitative evaluation: music recommendation performance

Full dataset (382,410 songs, 1m users)

Model	mAP@500	AUC
Random	0.00015	0.49935
Linear regression	0.00101	0.64522
CNN with MSE	0.00672	0.77192
Upper bound	0.23278	0.96070

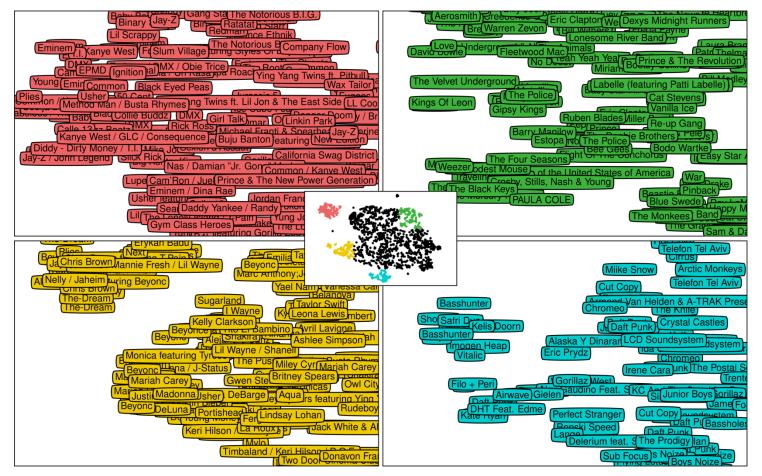
Query	Most similar tracks (WMF)	Most similar tracks (predicted)
<section-header></section-header>	Jonas Brothers Games	Jonas Brothers Video Girl
	Miley Cyrus G.N.O. (Girl's Night Out)	Jonas Brothers Games
	Miley Cyrus Girls Just Wanna Have Fun	New Found Glory My Friends Over You
	Jonas Brothers Year 3000	My Chemical Romance Thank You For The Venom
	Jonas Brothers BB Good	My Chemical Romance Teenagers

Query	Most similar tracks (WMF)	Most similar tracks (predicted)
<section-header></section-header>	Coldplay Careful Where You Stand	Arcade Fire Keep The Car Running
	Coldplay The Goldrush	M83 You Appearing
	Coldplay X & Y	Angus & Julia Stone Hollywood
	Coldplay Square One	Bon lver Creature Fear
	Jonas Brothers BB Good	Coldplay The Goldrush

Query	Most similar tracks (WMF)	Most similar tracks (predicted)
Beyonce Speechless	Beyonce Gift From Virgo	Daniel Bedingfield If You're Not The One
	Beyonce Daddy	Rihanna Haunted
	Rihanna / J-Status Crazy Little Thing Called	Alejandro Sanz Siempre Es De Noche
	Beyonce Dangerously In Love	Madonna Miles Away
	Rihanna Haunted	Lil Wayne / Shanell American Star

Deep learning and feature learning for MIR

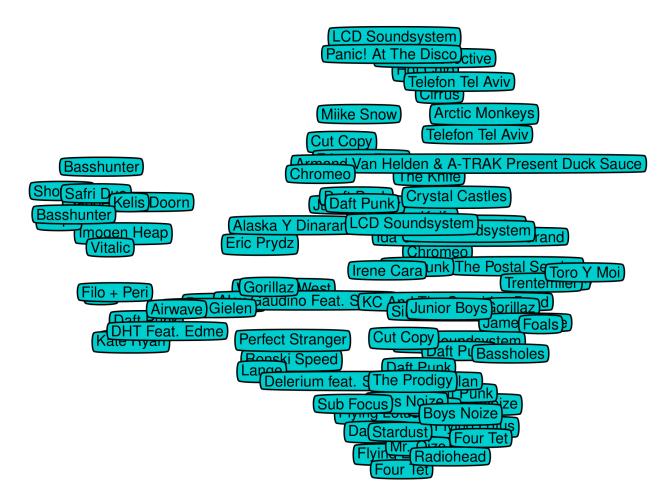
Query	Most similar tracks (WMF)	Most similar tracks (predicted)
Daft Punk Rock'n Roll	Daft Punk Short Circuit	Boys Noize Shine Shine
	Daft Punk Nightvision	Boys Noize Lava Lava
	Daft Punk Too Long	Flying Lotus Pet Monster Shotglass
	Daft Punk Aerodynamite	LCD Soundsystem One Touch
	Daft Punk One More Time	Justice One Minute To Midnight



McFee et al., TASLP 2012



Bow Wow

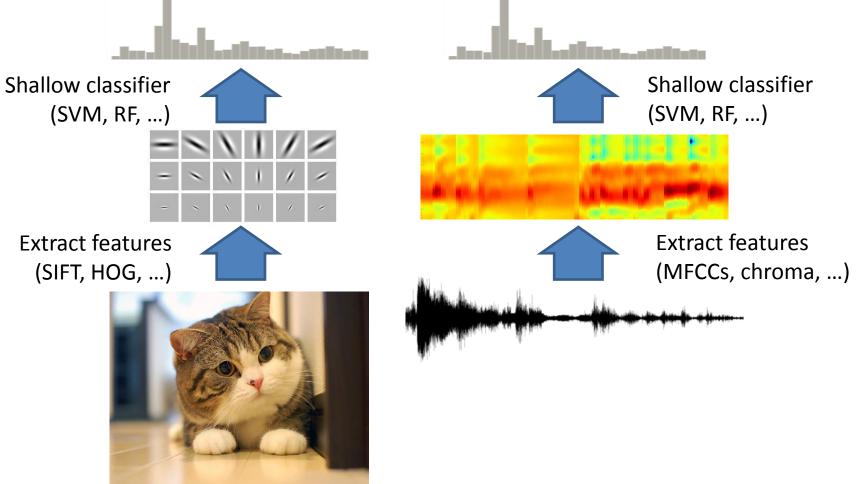


Qualitative evaluation: visualisation of predicted usage patterns (t-SNE)

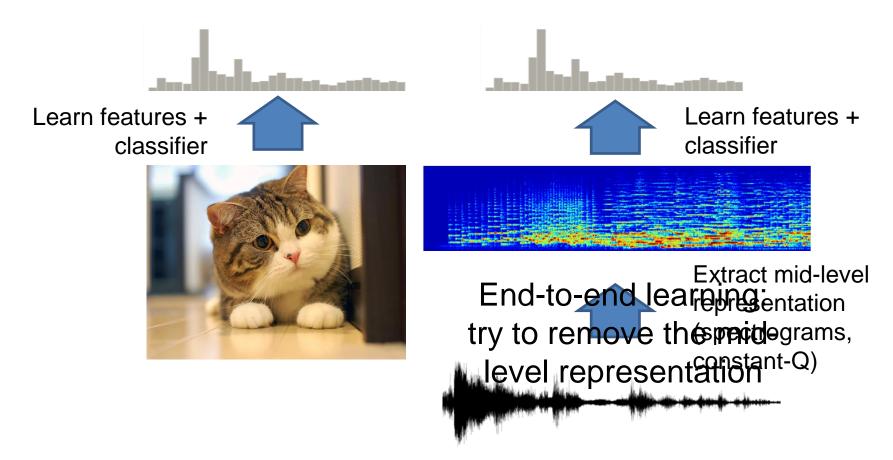
Predicting latent factors is a viable method for music recommendation

III. End-to-end learning for music audio

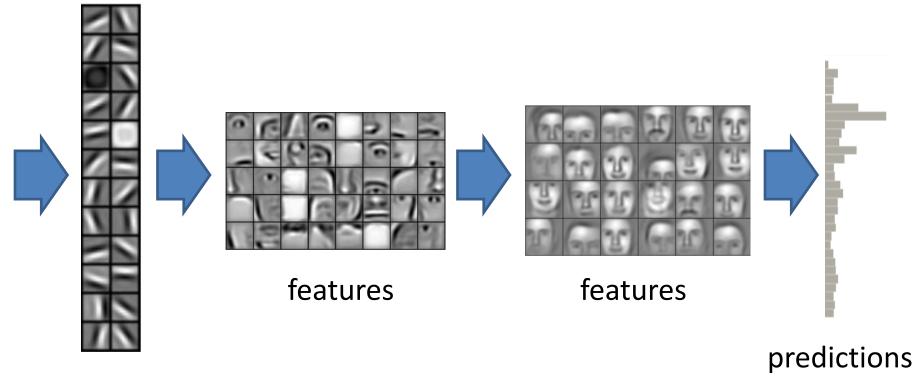
The traditional **two-stage approach**: feature extraction + shallow classifier



Integrated approach: learn both the features and the classifier

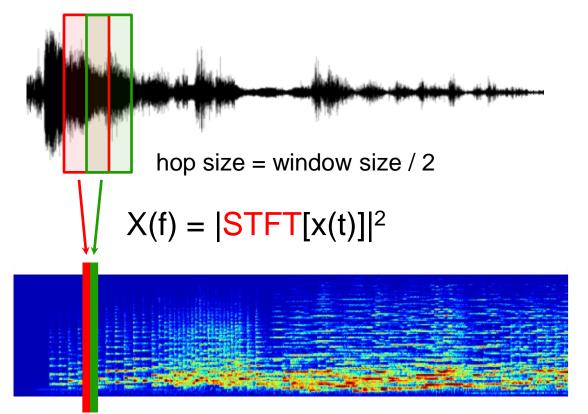


Convnets can learn the features and the classifier simultaneously



features

We use log-scaled mel spectrograms as a **mid-level representation**



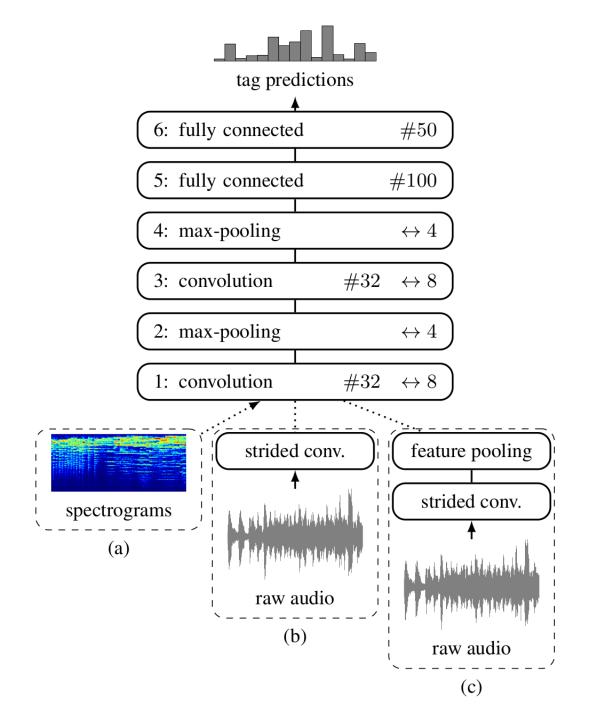
mel binning: X'(f) = M X(f)

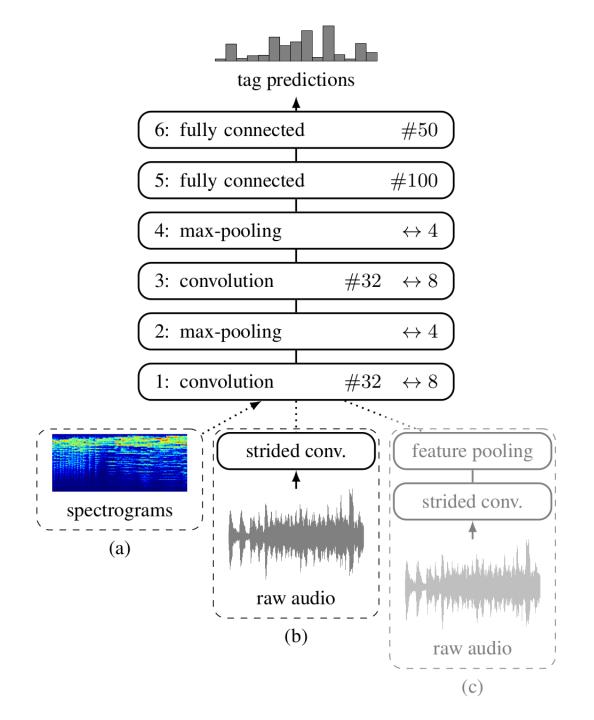
logarithmic loudness (DRC): $X''(f) = \log(1 + CX'(f))$

Evaluation: **tag prediction** on Magnatagatune

25863 clips of 29 seconds, annotated with 188 tags

Tags are versatile: genre, tempo, instrumentation, dynamics, ...



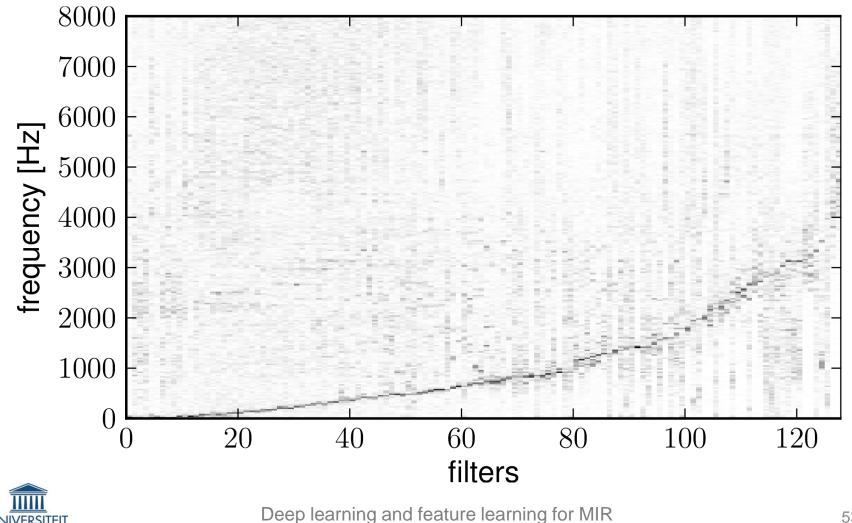


Spectrograms vs. raw audio signals

Length	Stride	AUC (spectrograms)	AUC (raw audio)
1024	1024	0.8690	0.8366
1024	512	0.8726	0.8365
512	512	0.8793	0.8386
512	256	0.8793	0.8408
256	256	0.8815	0.8487

The learned filters are mostly frequency-selective (and noisy)

Their dominant frequencies resemble the mel scale

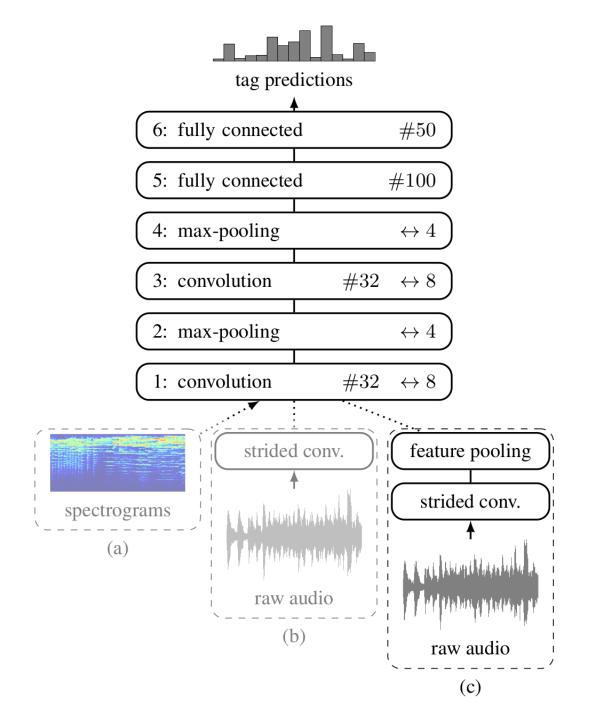


UNIVERSITEI GEN

53

Changing the nonlinearity to introduce compression does not help

Nonlinearity	AUC (raw audio)
Rectified linear, max(0, x)	0.8366
Logarithmic, log(1 + C x²)	0.7508
Logarithmic, log(1 + C x)	0.7487



Adding a **feature pooling** layer lets the network learn invariances

Pooling method	Pool size	AUC (raw audio)
No pooling	1	0.8366
L2 pooling	2	0.8387
L2 pooling	4	0.8387
Max pooling	2	0.8183
Max pooling	4	0.8280

The pools consist of filters that are shifted versions of each other

MMM MMM

man man man

www.www.www.

MMMMMMMM

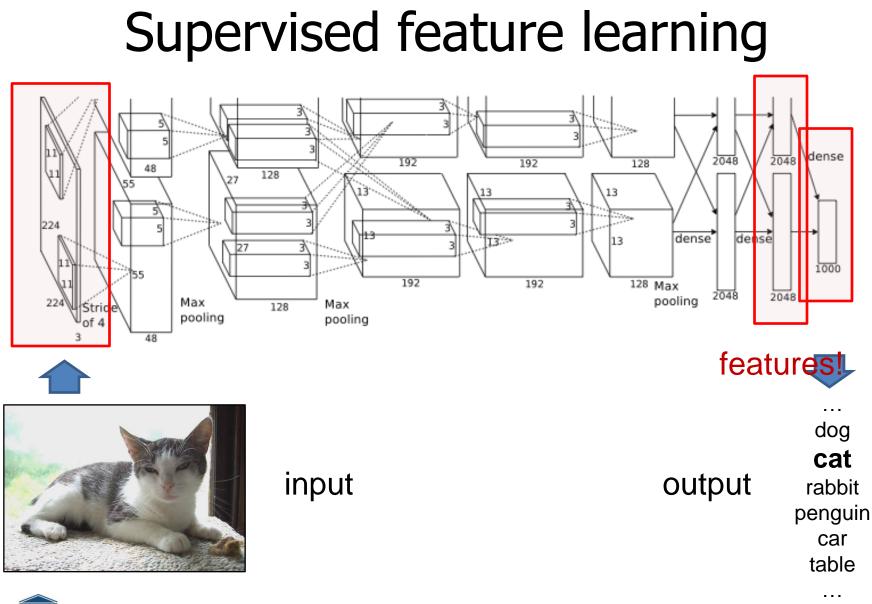
www.www.www.

MMM MMM Mur Mur Mur Mur Mark Mummum W-lynalulpumhmunhan

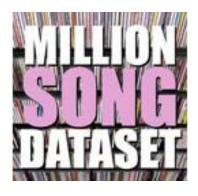
mann What was all and the warder of the second when the second -www.whwhell.whw. MummunuMM Manyumumum

Learning features from raw audio is possible, but this doesn't work as well as using spectrograms (yet).

IV. Transfer learning by supervised pre-training



Supervised feature learning for MIR tasks



lots of training data for:

- automatic tagging
- user listening preference prediction
- (i.e. recommendation)

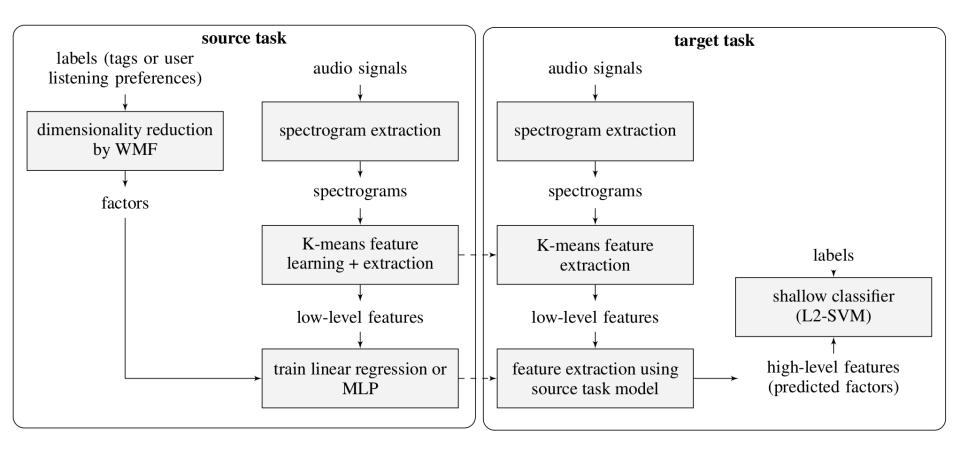
GTZAN	genre classification	10 genres
Unique	genre classification	14 genres
1517-artists	genre classification	19 genres
Magnatagatune	automatic tagging	188 tags

Tag and listening prediction differ from typical classification tasks

- multi-label classification
- large number of classes (tags, users)
- weak labeling
- redundancy
- sparsity

use WMF for label space dimensionality reduction

Schematic overview



Source task results

User listening preference prediction

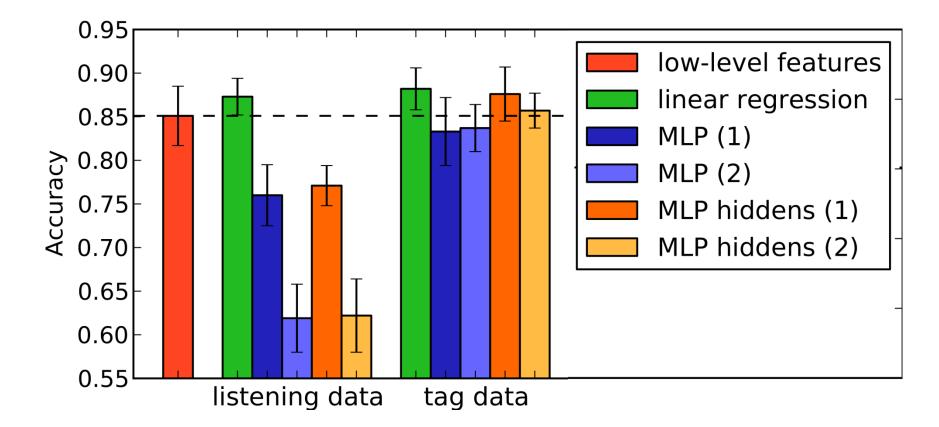
Model	NMSE	AUC	mAP
Linear regression	0.986	0.75	0.0076
MLP (1 hidden layer)	0.971	0.76	0.0149
MLP (2 hidden layers)	0.961	0.746	0.0186

Source task results

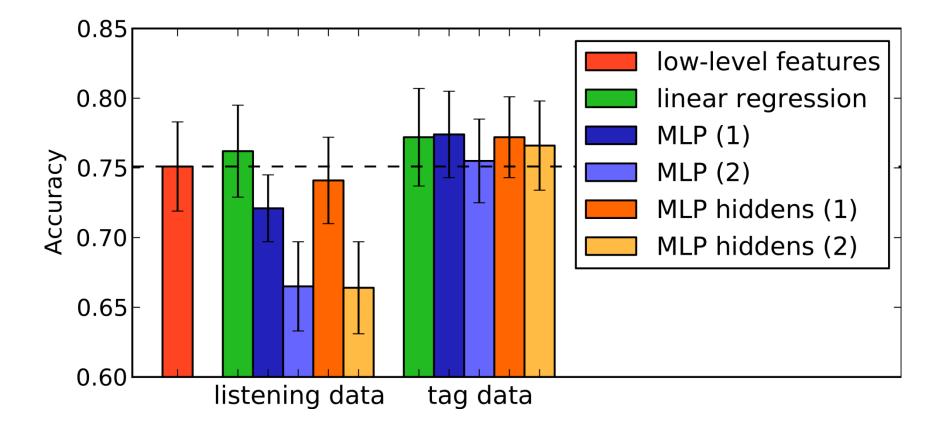
Tag prediction

Model	NMSE	AUC	mAP
Linear regression	0.965	0.823	0.0099
MLP (1 hidden layer)	0.939	0.841	0.0179
MLP (2 hidden layers)	0.924	0.837	0.0179

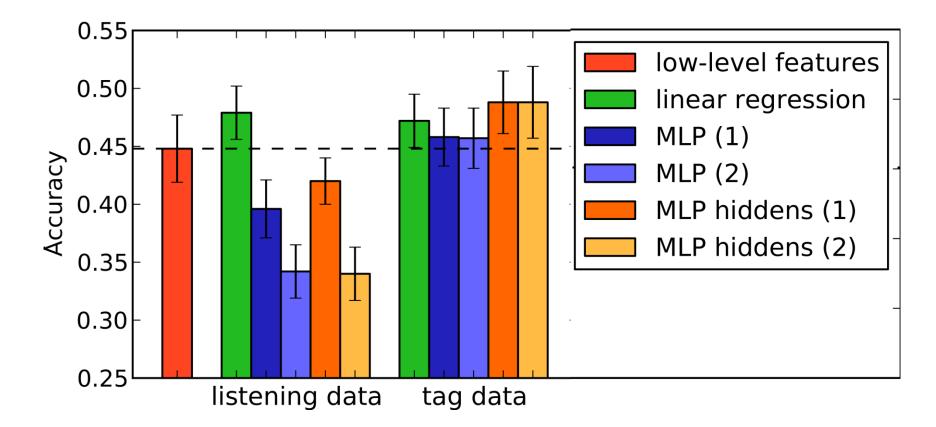
Target task results: GTZAN genre classification



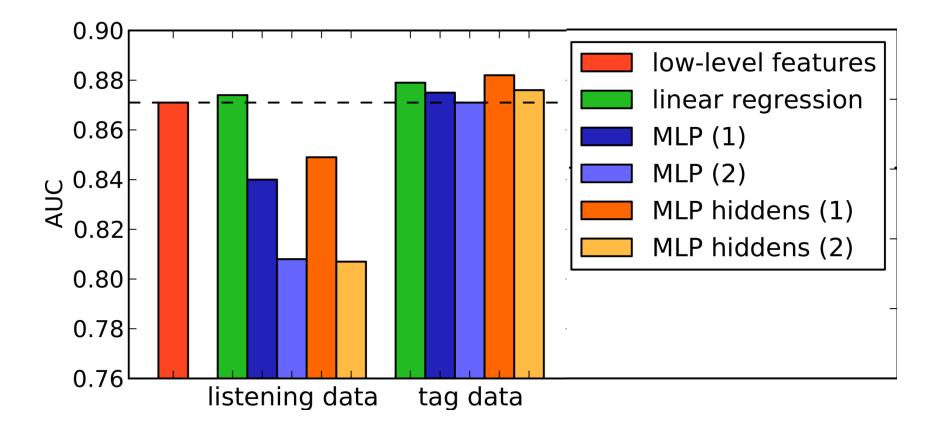
Target task results: Unique genre classification



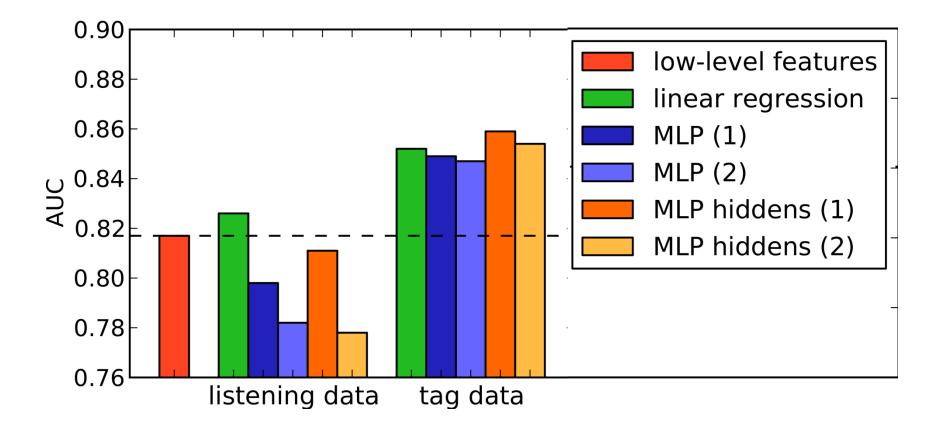
Target task results: 1517-artists genre classification



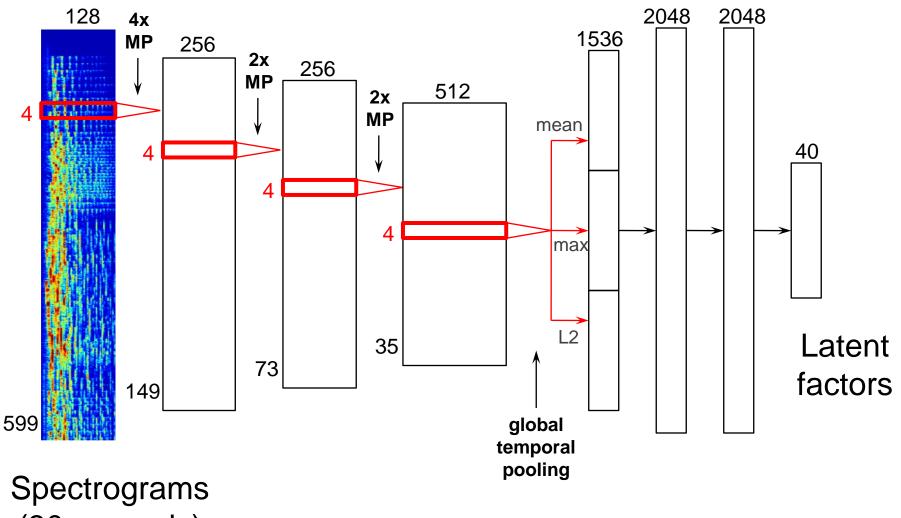
Target task results: Magnatagatune auto-tagging (50)



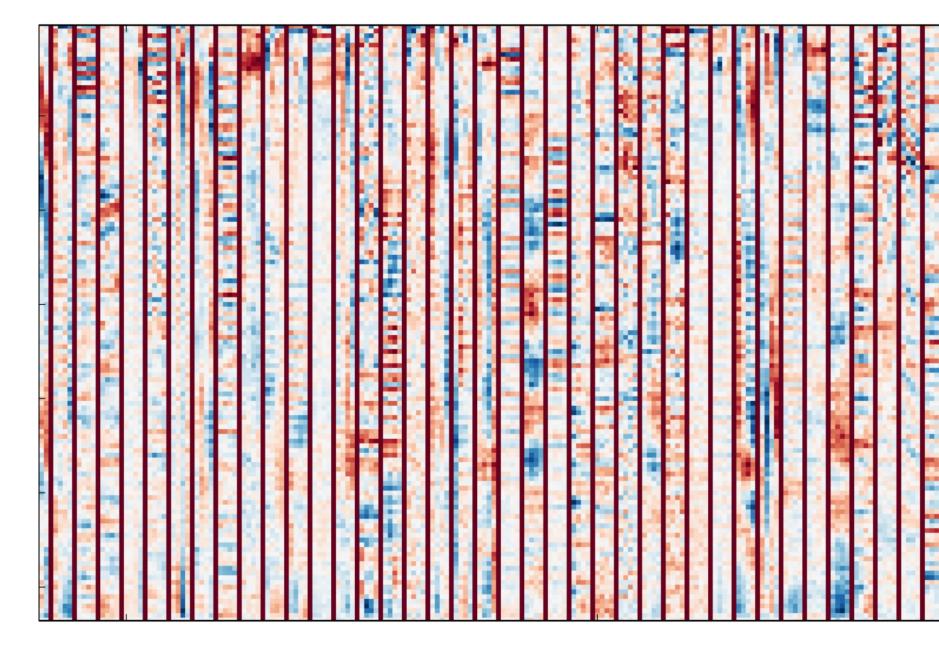
Target task results: Magnatagatune auto-tagging (188)



V. More music recommendation



(30 seconds)



DEMO

C 100.00

-

17... *****

WINEHOUSE

5

HIRE

日日的

20 GLOBIA GATNOR

COLLECTIVE PERMIX nuc H

ATAZZ

at,

2.50

Poet

CR

5

1 99

Papers

Multiscale approaches to music audio feature learning

Sander Dieleman, Benjamin Schrauwen, ISMIR 2013

Deep content-based music recommendation

Aäron van den Oord, Sander Dieleman, Benjamin Schrauwen, NIPS 2013

End-to-end learning for music audio

Sander Dieleman, Benjamin Schrauwen, ICASSP 2014

Transfer learning by supervised pre-training for audiobased music classification

Aäron van den Oord, Sander Dieleman, Benjamin Schrauwen, ISMIR 2014

