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I. Multiscale music
audio feature learning
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Feature learning is receiving more 
attention from the MIR community
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Inspired by good results in:
speech recognition
computer vision, image classification
NLP, machine translation
…
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Music exhibits structure on
many different timescales
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BA AC B Musical form

Themes

Motifs

Periodic waveforms
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K-means for feature learning:
cluster centers are features
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Spherical K-means:

means lie on the unit sphere, have a unit L2 norm

+ conceptually very simple

+ only one parameter to tune: number of 

means

+ orders of magnitude faster than RBMs, 

autoencoders, sparse coding

(Coates and Ng, 2012)
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Spherical K-means features work
well with linear feature encoding
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Feature extraction is a convolution operation

input data

filter

During training:

During feature extraction:

0 0 1.7 0

-0.2 2.3 1.7 0.7

One-of-K

Linear

(Coates and Ng, 2012)
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Multiresolution spectrograms: 
different window sizes
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Coarse

Fine 1024 samples

2048 samples

4096 samples

8192 samples

(Hamel et al., 2012)
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Gaussian pyramid: repeated 
smoothing and subsampling
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Coarse

Fine

Smooth and 

subsample /2

Smooth and 

subsample /2

Smooth and 

subsample /2

(Burt and Adelson, 1983)
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Laplacian pyramid: difference 
between levels of the Gaussian pyramid
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subtract

(Burt and Adelson, 1983)
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Our approach: feature learning
on multiple timescales
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Task: tag prediction on
the Magnatagatune dataset
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We trained a multilayer perceptron (MLP):

• 1000 rectified linear hidden units

• cross-entropy objective

• predict 50 most common tags

25863 clips of 29 seconds, annotated with 188 tags

Tags are versatile: genre, tempo, instrumentation, dynamics, …

(Law and von Ahn, 2009)
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Results: tag prediction on
the Magnatagatune dataset
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Results: importance of each
timescale for different types of tags
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Learning features at multiple timescales improves 

performance over single-timescale approaches

Spherical K-means features consistently 

improve performance
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II. Deep content-based
music recommendation

20
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Music recommendation is becoming 
an increasingly relevant problem
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Shift to digital distribution

long tail

The long tail is 

particularly long for music
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Collaborative filtering: use listening 
patterns for recommendation
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+ good performance

- cold start problem

many niche items that 

only appeal to a small 

audience
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- worse performance

+ no usage data required

Content-based: use audio content 
and/or metadata for recommendation
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allows for all items to 

be recommended 

regardless of popularity

Artist
Title
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There is a large semantic gap 
between audio signals and listener 

preference
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audio signals

genre popularity time

lyrical themes

mood

instrumentationlocation
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Matrix Factorization: model listening 
data as a product of latent factors
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Weighted Matrix Factorization: latent 
factor model for implicit feedback data
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Play count > 0 is a strong positive signal

Play count = 0 is a weak negative signal

WMF uses a confidence matrix to 

emphasize positive signals 
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We predict latent factors
from music audio signals
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Deep learning approach: 
convolutional neural network
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The Million Song Dataset provides 
metadata for 1,000,000 songs

+ Echo Nest Taste profile subset

Listening data from 1.1m users for 380k songs

+ 7digital

Raw audio clips (over 99% of dataset)
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Bertin-Mahieux et al., ISMIR 2011
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Subset (9330 songs, 20000 users)

Model mAP@500 AUC

Metric learning to rank 0.01801 0.60608

Linear regression 0.02389 0.63518

Multilayer perceptron 0.02536 0.64611

CNN with MSE 0.05016 0.70987

CNN with WPE 0.04323 0.70101

Quantitative evaluation: music 
recommendation performance

31
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Quantitative evaluation: music 
recommendation performance
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Full dataset (382,410 songs, 1m users)

Model mAP@500 AUC

Random 0.00015 0.49935

Linear regression 0.00101 0.64522

CNN with MSE 0.00672 0.77192

Upper bound 0.23278 0.96070
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Qualitative evaluation: some
queries and their closest matches
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Query Most similar tracks (WMF)
Most similar tracks 
(predicted)

Jonas Brothers 
Hold On

Jonas Brothers
Games

Miley Cyrus
G.N.O. (Girl’s Night Out) 

Miley Cyrus
Girls Just Wanna Have Fun

Jonas Brothers
Year 3000

Jonas Brothers
BB Good

Jonas Brothers
Video Girl

Jonas Brothers
Games

New Found Glory
My Friends Over You

My Chemical Romance
Thank You For The Venom

My Chemical Romance
Teenagers
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Qualitative evaluation: some
queries and their closest matches

34

Query Most similar tracks (WMF)
Most similar tracks 
(predicted)

Coldplay
I Ran Away

Coldplay
Careful Where You Stand 

Coldplay
The Goldrush

Coldplay
X & Y 

Coldplay
Square One 

Jonas Brothers
BB Good 

Arcade Fire
Keep The Car Running

M83
You Appearing

Angus & Julia Stone
Hollywood

Bon Iver
Creature Fear

Coldplay
The Goldrush
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Qualitative evaluation: some
queries and their closest matches

35

Query Most similar tracks (WMF)
Most similar tracks 
(predicted)

Beyonce
Speechless

Beyonce
Gift From Virgo 

Beyonce
Daddy 

Rihanna / J-Status
Crazy Little Thing Called ...

Beyonce
Dangerously In Love 

Rihanna
Haunted

Daniel Bedingfield
If You’re Not The One

Rihanna
Haunted

Alejandro Sanz
Siempre Es De Noche

Madonna
Miles Away

Lil Wayne / Shanell
American Star
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Qualitative evaluation: some
queries and their closest matches

36

Query Most similar tracks (WMF)
Most similar tracks 
(predicted)

Daft Punk 
Rock’n Roll

Daft Punk
Short Circuit 

Daft Punk
Nightvision 

Daft Punk
Too Long

Daft Punk
Aerodynamite 

Daft Punk
One More Time 

Boys Noize
Shine Shine

Boys Noize
Lava Lava

Flying Lotus
Pet Monster Shotglass

LCD Soundsystem
One Touch

Justice
One Minute To Midnight
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Qualitative evaluation: visualisation
of predicted usage patterns (t-SNE)
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McFee et al., TASLP 2012
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Qualitative evaluation: visualisation
of predicted usage patterns (t-SNE)
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Qualitative evaluation: visualisation
of predicted usage patterns (t-SNE)
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Qualitative evaluation: visualisation
of predicted usage patterns (t-SNE)
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Qualitative evaluation: visualisation
of predicted usage patterns (t-SNE)
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Predicting latent factors is a viable 
method for music recommendation

42



Deep learning and feature learning for MIR

III. End-to-end
learning for music audio

43
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The traditional two-stage approach: 
feature extraction + shallow classifier
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TODO

Extract features
(SIFT, HOG, …)

Shallow classifier
(SVM, RF, …)

Extract features
(MFCCs, chroma, …)

Shallow classifier
(SVM, RF, …)
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Integrated approach: learn both the 
features and the classifier
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Learn features + 

classifier

Extract mid-level 

representation

(spectrograms, 

constant-Q)

Learn features + 

classifier

End-to-end learning:

try to remove the mid-

level representation



Deep learning and feature learning for MIR

Convnets can learn the features and 
the classifier simultaneously

46

features features

predictions
features
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We use log-scaled mel spectrograms as 
a mid-level representation
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hop size = window size / 2

X(f) = |STFT[x(t)]|2

logarithmic loudness (DRC): X’’(f) = log(1 + C X’(f)) 

mel binning: X’(f) = M X(f)
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Evaluation: tag prediction
on Magnatagatune
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25863 clips of 29 seconds, annotated with 188 tags

Tags are versatile: genre, tempo, instrumentation, dynamics, …
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Spectrograms vs. raw audio signals
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Length Stride AUC (spectrograms) AUC (raw audio)

1024 1024 0.8690 0.8366

1024 512 0.8726 0.8365

512 512 0.8793 0.8386

512 256 0.8793 0.8408

256 256 0.8815 0.8487
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The learned filters are mostly 
frequency-selective (and noisy)

52
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Their dominant frequencies
resemble the mel scale

53
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Changing the nonlinearity to introduce 
compression does not help
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Nonlinearity AUC (raw audio)

Rectified linear, max(0, x) 0.8366

Logarithmic, log(1 + C x2) 0.7508

Logarithmic, log(1 + C |x|) 0.7487
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Adding a feature pooling layer lets 
the network learn invariances
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Pooling method Pool size AUC (raw audio)

No pooling 1 0.8366

L2 pooling 2 0.8387

L2 pooling 4 0.8387

Max pooling 2 0.8183

Max pooling 4 0.8280
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The pools consist of filters that are 
shifted versions of each other

57
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Learning features from raw audio is possible, but this 
doesn’t work as well as using spectrograms (yet).
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IV. Transfer learning by
supervised pre-training

59
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Supervised feature learning

60

…

dog

cat
rabbit

penguin

car

table

…

input output

features!
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Supervised feature
learning for MIR tasks
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lots of training data for:

- automatic tagging

- user listening preference prediction

(i.e. recommendation)

GTZAN genre classification 10 genres

Unique genre classification 14 genres

1517-artists genre classification 19 genres

Magnatagatune automatic tagging 188 tags
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Tag and listening prediction differ 
from typical classification tasks

- multi-label classification

- large number of classes (tags, users)

- weak labeling

- redundancy

- sparsity

62

use WMF for label space 

dimensionality reduction
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Schematic overview

63
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Source task results
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Model NMSE AUC mAP

Linear regression 0.986 0.75 0.0076

MLP (1 hidden layer) 0.971 0.76 0.0149

MLP (2 hidden layers) 0.961 0.746 0.0186

User listening preference prediction
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Source task results

65

Model NMSE AUC mAP

Linear regression 0.965 0.823 0.0099

MLP (1 hidden layer) 0.939 0.841 0.0179

MLP (2 hidden layers) 0.924 0.837 0.0179

Tag prediction
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Target task results:
GTZAN genre classification
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Target task results:
Unique genre classification
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Target task results:
1517-artists genre classification

68
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Target task results:
Magnatagatune auto-tagging (50)
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Target task results:
Magnatagatune auto-tagging (188)
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V. More music recommendation
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128

599

4

256

149

4x

MP

4

256

73

2x

MP

4

512

35

4

2x

MP

global 

temporal 

pooling

mean

1536
2048 2048

40

L2

max

Spectrograms

(30 seconds)

Latent 

factors



Deep learning and feature learning for MIR 73



DEMO
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