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Overview

Parametric generative model of natural images

Difficult to generate large natural images in one shot, but we
can exploit their multi-scale structure

We combine the power of generative adversarial networks
(GAN) with a multi-scale image representation (Laplacian
pyramid)

→ → → →
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Generative modelling of natural images

Have access to x ∼ pdata(x) through training set

Want to learn a model x ∼ pmodel(x)

Want pmodel to be similar to pdata
Samples drawn from pmodel reflect structure of pdata
Samples from true data distribution have high likelihood under
pmodel
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Why do generative modeling?

Unsupervised representation learning

Can transfer learned representation so discriminative tasks,
retrieval, clustering, etc.

Train network with both discriminative and generative
criterion

Very little labeled data
Regularization

Understand data

Density estimation

...
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CIFAR-10 samples from other models

Goodfellow et al. (2014):

Sohl-Dickstein et al. (2015): Gregor et al. (2015):
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Generative adversarial networks (Goodfellow et al., 2014)

Generative model G :
captures data distribution

Discriminative model D:
trained to distinguish
between real and fake
samples , defines loss
function for G
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Generative adversarial networks

D is trained to estimate the probability that a sample came
from data distribution rather than G

G is trained to maximize the probability of D making a
mistake

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pnoise(z)[log(1− D(G (z)))]
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Conditional generative adversarial networks (CGAN)

Condition generation on additional info y (e.g. class label,
another image)

D has to determine if samples are realistic given y

[Mirza and Osindero (2014); Gauthier (2014)]
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Laplacian pyramid (Burt & Adelson, 1983)
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Laplacian pyramid (Burt & Adelson, 1983)
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Training procedure

Train conditional
GAN for each level of
Laplacian pyramid

G learns to generate
high frequency
structure consistent
with low frequency
image
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Training procedure

Each level of Laplacian pyramid trained independently
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Sampling procedure
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CIFAR-10

Small dataset 32x32 images of objects, 50k images, 10 classes
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CIFAR-10 ship samples
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CIFAR-10 horse samples
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CIFAR-10 nearest neighbours (pixel space)
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CIFAR-10 nearest neighbours (nn feature space)
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CIFAR-10 human evaluations

Humans randomly presented with real or generated image and
asked to determine if real of fake

Humans think LAPGAN generations are real ∼40% of the
time
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LSUN

Large dataset of scenes, ∼10M images, 10 classes.
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LSUN coarse-to-fine chain
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LSUN church samples
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LSUN tower samples
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LSUN variability
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Recent developments in GAN training

Radford, Metz and Chintala (2015) propose several tricks to
make GAN training more stable

http://arxiv.org/pdf/1511.06434v1.pdf

Future work: apply same tricks to training of LAPGAN model
to potenitally improve samples and produce higher resolution
images
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Conclusion

Proposed a simple generative model that can produce decent
quality samples of natural images

Potential to be used as a decoder in autoencoder framework
for unsupervised learning

GAN framework is difficult to train, no clear objective function
to track

Code & demo: http://soumith.ch/eyescream
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The End

Code & demo: http://soumith.ch/eyescream
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