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@ Parametric generative model of natural images

o Difficult to generate large natural images in one shot, but we
can exploit their multi-scale structure

@ We combine the power of generative adversarial networks
(GAN) with a multi-scale image representation (Laplacian
pyramid)
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Generative modelling of natural images

@ Have access to x ~ pgara(x) through training set

e Want to learn a model x ~ ppmoder(X)

@ Want ppodel to be similar to pyata

e Samples drawn from ppeqer reflect structure of pgyat,
e Samples from true data distribution have high likelihood under

Pmodel
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Why do generative modeling?

@ Unsupervised representation learning

e Can transfer learned representation so discriminative tasks,
retrieval, clustering, etc.

Train network with both discriminative and generative
criterion

o Very little labeled data
o Regularization

@ Understand data

Density estimation
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CIFAR-10 samples from other models
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Generative adversarial networks (Goodfellow et al., 2014)

Z~ pnoise(z)
@ Generative model G:
captures data distribution

Generative
network

@ Discriminative model D: X ~ Paaa(X)

between real and fake
samples , defines loss

trained to distinguish % [Q()lOO] [OoloO]

Discriminative Discriminative

fU nct i on fOI’ G network network
D tries to D tries to
output 0 output 1
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Generative adversarial networks

@ D is trained to estimate the probability that a sample came
from data distribution rather than G

@ G is trained to maximize the probability of D making a
mistake

min max By, (0108 D(X)] + Bz o) l08(1 — D(G(2))]
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Conditional generative adversarial networks (CGAN)

e Condition generation on additional info y (e.g. class label,
another image)
@ D has to determine if samples are realistic given y

Z~ Proise(2) Y ~ Pgatal¥)

([OOO0) (OOO)

Generative
network

X, Y~ Pdata(X; ¥)

[C000) (O00)

D tries to D tries to
output 0 output 1

[Mirza and Osindero (2014); Gauthier (2014)]
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Laplacian pyramid (Burt & Adelson, 1983)

Low pass f||tered images

Band-pass filtered
images
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Laplacian pyramid (Burt & Adelson, 1983)

Low frequency re5|dual
image S
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Training procedure

i~ pnoise(z)

@ Train conditional
GAN for each level of
Laplacian pyramid

@ G learns to generate
high frequency
structure consistent
with low frequency
image

Real/Generated?
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Training procedure

Each level of Laplacian pyramid trained independently

Real/
73 Generated?

- . Generated?
Real/Generated? 7

Real/Generated?
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Sampling procedure
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CIFAR-10

@ Small dataset 32x32 images of objects, 50k images, 10 classes

Generator: 128 128
channels channels

B

Conv1 Conv2 Conv3
(7x7) (7x7)
+RelLU

(5x5)
+RelLU

4 channels
(3 color, 1 noise)

ey

128 128
. — channels channels
Discriminator:

‘ ‘ ‘ Probability
|
- |

image is
| real
Conv1 Conv2 Linear
(5x5) (5x5) + Sigmoid
+RelLU + RelLU
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CIFAR-10 ship samples
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CIFAR-10 nearest neighbours (pixel space)
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CIFAR-10 nearest neighbours (nn feature space)
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CIFAR-10 human evaluations

@ Humans randomly presented with real or generated image and
asked to determine if real of fake

@ Humans think LAPGAN generations are real ~40% of the

time
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LSUN

@ Large dataset of scenes, ~10M images, 10 classes.

Generator: 64 368 128 224
. channels channels channels channels
4 channels
(3 color, 1 noise) ‘ ‘
Conv1 (7x7) Conv2 (7x7) Conv3 (7x7) Convé (5x5) Convs
+Batch G +Batch izati +Batch G +Batch (7x7)
+RelU +RelU +RelU

normalization

Discriminator: 416

448
channels channels channels

Probability
image is
‘ real
i; O

|
Convi Conv2 Conv2 Linear
(3x3) (5x5) (5x5) + Sigmoid
+ReLU +RelU +RelU
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LSUN coarse-to-fine chain
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LSUN church samples
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LSUN tower samples
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LSUN variability
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Recent developments in GAN training

e Radford, Metz and Chintala (2015) propose several tricks to
make GAN training more stable

o http: //arX|v org/pdf/1511 06434v1.pdf

@ Future work: apply same tricks to training of LAPGAN model
to potenitally improve samples and produce higher resolution
images
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Conclusion

@ Proposed a simple generative model that can produce decent
quality samples of natural images

o Potential to be used as a decoder in autoencoder framework
for unsupervised learning

@ GAN framework is difficult to train, no clear objective function
to track

e Code & demo: http://soumith.ch/eyescream

E. Denton, S. Chintala, et al. Laplacian Pyramid of Generative Adversarial Nets



The End

Code & demo: http://soumith.ch/eyescream
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