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Topics: Two Most Important Moments in MT Research

• In 1949: Warren Weaver’s Memorandum <Translation>

• In 1991-1993: Statistical MT from IBM
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“.. it is very tempting to say that a book written 
in Chinese is simply a book written in English 
which was coded into the "Chinese code." If we 
have useful methods for solving almost any 
cryptographic problem, may it not be that with 
proper interpretation we already have useful 
methods for translation?”

- Weaver (1949)

Warren Weaver, 1894-1978

Warren Weaver Hall



6

Robert L. Mercer
(Hedge Fund Magnate*)

* NY Times

The Mathematics of Statistical Machine 
Translation: Parameter Estimation 

Peter E Brown* 
IBM T.J. Watson Research Center 

Vincent J. Della Pietra* 
IBM T.J. Watson Research Center 

Stephen A. Della Pietra* 
IBM T.J. Watson Research Center 

Robert L. Mercer* 
IBM T.J. Watson Research Center 

We describe a series o,f five statistical models o,f the translation process and give algorithms,for 
estimating the parameters o,f these models given a set o,f pairs o,f sentences that are translations 
o,f one another. We define a concept o,f word-by-word alignment between such pairs o,f sentences. 
For any given pair of such sentences each o,f our models assigns a probability to each of the 
possible word-by-word alignments. We give an algorithm for seeking the most probable o,f these 
alignments. Although the algorithm is suboptimal, the alignment thus obtained accounts well for 
the word-by-word relationships in the pair o,f sentences. We have a great deal o,f data in French 
and English from the proceedings o,f the Canadian Parliament. Accordingly, we have restricted 
our work to these two languages; but we,feel that because our algorithms have minimal linguistic 
content they would work well on other pairs o,f languages. We also ,feel, again because of the 
minimal linguistic content o,f our algorithms, that it is reasonable to argue that word-by-word 
alignments are inherent in any sufficiently large bilingual corpus. 

1. Introduct ion 

The growing availability of bilingual, machine-readable texts has stimulated interest 
in methods for extracting linguistically valuable information from such texts. For ex- 
ample, a number of recent papers deal with the problem of automatically obtaining 
pairs of aligned sentences from parallel corpora (Warwick and Russell 1990; Brown, 
Lai, and Mercer 1991; Gale and Church 1991b; Kay 1991). Brown et al. (1990) assert, 
and Brown, Lai, and Mercer (1991) and Gale and Church (1991b) both show, that it is 
possible to obtain such aligned pairs of sentences without inspecting the words that 
the sentences contain. Brown, Lai, and Mercer base their algorithm on the number of 
words that the sentences contain, while Gale and Church base a similar algorithm on 
the number of characters that the sentences contain. The lesson to be learned from 
these two efforts is that simple, statistical methods can be surprisingly successful in 
achieving linguistically interesting goals. Here, we address a natural extension of that 
work: matching up the words within pairs of aligned sentences. 

In recent papers, Brown et al. (1988, 1990) propose a statistical approach to ma- 
chine translation from French to English. In the latter of these papers, they sketch an 
algorithm for estimating the probability that an English word will be translated into 
any particular French word and show that such probabilities, once estimated, can be 
used together with a statistical model of the translation process to align the words 
in an English sentence with the words in its French translation (see their Figure 3). 

* IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 

(~) 1993 Association for Computational Linguistics 

251 Mercer Street
New York, N.Y. 10012-1185

Mercer St.
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Peter F. Brown
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Translation: Parameter Estimation 

Peter E Brown* 
IBM T.J. Watson Research Center 

Vincent J. Della Pietra* 
IBM T.J. Watson Research Center 

Stephen A. Della Pietra* 
IBM T.J. Watson Research Center 

Robert L. Mercer* 
IBM T.J. Watson Research Center 

We describe a series o,f five statistical models o,f the translation process and give algorithms,for 
estimating the parameters o,f these models given a set o,f pairs o,f sentences that are translations 
o,f one another. We define a concept o,f word-by-word alignment between such pairs o,f sentences. 
For any given pair of such sentences each o,f our models assigns a probability to each of the 
possible word-by-word alignments. We give an algorithm for seeking the most probable o,f these 
alignments. Although the algorithm is suboptimal, the alignment thus obtained accounts well for 
the word-by-word relationships in the pair o,f sentences. We have a great deal o,f data in French 
and English from the proceedings o,f the Canadian Parliament. Accordingly, we have restricted 
our work to these two languages; but we,feel that because our algorithms have minimal linguistic 
content they would work well on other pairs o,f languages. We also ,feel, again because of the 
minimal linguistic content o,f our algorithms, that it is reasonable to argue that word-by-word 
alignments are inherent in any sufficiently large bilingual corpus. 

1. Introduct ion 

The growing availability of bilingual, machine-readable texts has stimulated interest 
in methods for extracting linguistically valuable information from such texts. For ex- 
ample, a number of recent papers deal with the problem of automatically obtaining 
pairs of aligned sentences from parallel corpora (Warwick and Russell 1990; Brown, 
Lai, and Mercer 1991; Gale and Church 1991b; Kay 1991). Brown et al. (1990) assert, 
and Brown, Lai, and Mercer (1991) and Gale and Church (1991b) both show, that it is 
possible to obtain such aligned pairs of sentences without inspecting the words that 
the sentences contain. Brown, Lai, and Mercer base their algorithm on the number of 
words that the sentences contain, while Gale and Church base a similar algorithm on 
the number of characters that the sentences contain. The lesson to be learned from 
these two efforts is that simple, statistical methods can be surprisingly successful in 
achieving linguistically interesting goals. Here, we address a natural extension of that 
work: matching up the words within pairs of aligned sentences. 

In recent papers, Brown et al. (1988, 1990) propose a statistical approach to ma- 
chine translation from French to English. In the latter of these papers, they sketch an 
algorithm for estimating the probability that an English word will be translated into 
any particular French word and show that such probabilities, once estimated, can be 
used together with a statistical model of the translation process to align the words 
in an English sentence with the words in its French translation (see their Figure 3). 

* IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 

(~) 1993 Association for Computational Linguistics 

Warren Weaver Hall
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Maybe, there is something about CIMS, NYU 
with machine translation…

if you find a double 
della-pietra i'll be super 

impressed :)



Warning
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“It will be all too easy for our somewhat artificial 
prosperity to collapse overnight when it is 
realized that the use of a few exciting words like 
information, entropy, redundancy, do not solve all 
our problems”

- Shannon (1956)

Claude Shannon, 1916-2001
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Topics: Statistical Machine Translation
•  

• Translation model: 
• Fit it with parallel corpora

• Language model: 
• Fit it with monolingual corpora

• The whole task                is conditional language modelling.

TMParallel

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Mono
CorporaCorpora LM

log p(e|f) log p(f)+

( | ) = ( | ) + ( ) +

! ( | )

! ( | )

! ( )

!

log p(f |e) = log p(e|f) + log p(f)

log p(e|f)

log p(f)

log p(f |e)
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Topics: Statistical Machine Translation - In Reality

•  
• Log-linear model 
• Feature function 

• Steps:
(1) Experts engineer useful features
(2) Use a simple log-linear model 
(3) Use a strong, external language model

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Mono
Corpora

Parallel
Corpora

Feature
f 1

Feature
f 2

Feature
f 3

Feature
fN

...

+
w1 w2 w3 wN

( | ) ≈
∑

ω ( , ) +

log p(f |e) ⇡
NX

n=1

fn(e, f) + C

fn(e, f)



Neural Machine Translation
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SPAIN IN 1997
15



NEURAL MACHINE TRANSLATION
16

(‘101’)

(‘00’)

DECODER

ENCODER

... ...

...

... ...

s

=(‘1011’)r (‘001’)s

r

M

N

N

N

K

y(‘1’)

(‘1’)u

“We propose .. Recursive Hetero-Associative 
Memory which .. may be applied to learn general 
translations from examples in which different 
sentences may have the same translation.”

– Forcada & Ñeco, 1997
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(Castaño&Casacuberta, 1997)

CONTEXT UNITS INPUTS

copy

CONTEXT UNITS

copy OUTPUT UNITS

HIDDEN UNITS

Figure 2. Hybrid Elman Simple Recurrent Network.

2.2. Training procedure

The neural architecture described above was trained
using an on-line version of the Backward-Error
Propagation algorithm [13]; that is, a gradient-truncated
version of a full-descent procedure. The words of every
message were presented sequentially at the input layer of
the SRN, while the model had to provide the successive
words of the corresponding translated sentence (see
Figure 1). After inputs and target units were updated, the
forward step was computed, the error was back-
propagated through the net and the weights were
modified. Later, the hidden unit activations (and also the
outputs for the Extended architecture) were copied onto
the corresponding context units. This time cycle was
continuously repeated until the target value of the
corresponding output neuron identified the end of the
translated sentence. A sigmoid function (0,1) was
assumed  as the non-linear activation function and,
consequently, context activations were initialized to 0.5
at the beginning of every input-output pair. The updating
of the weights required estimating appropriate values for
the learning rate and momentum. With this objective in
mind, the net was trained for 10 random presentations of
the complete learning corpus (10 epochs). Training
continued for the learning rate and momentum which led
to the lowest mean squared error. And the learning
process stopped when a certain established criterion was
verified.

With regard to the translated message provided by the
net, the SRN continuously generated (at each time cycle)
output activations. Because of the local representation of
the target lexicon, it was determined that only one of the
output neurons should be activated at a time. We
considered that the net supplied the output word which
was associated to the neuron with the maximum
activation.

3. THE EXPERIMENTAL MACHINE
TRANSLATION TASK

The connectionist translator described in the previous
section was tested with a pseudo-natural task called

Miniature Language Acquisition (MLA), which had
been originally introduced in [7] and adequately
reformulated later as a MT task [5]. This task consisted
in translating descriptions of simple two-dimensional
visual scenes from Spanish into English and vice versa.
Small lexicons (about 22 words) were taken into
account. An example of this task, named Descriptive
MLA-MT task is shown in Figure 3.
Since this Descriptive MLA-MT task involved fairly
simple syntax, a more complex Extended MLA-MT task
(presented in [5]) was also considered in the
experiments. This last task, which included the
possibility of adding or removing objects to or from a
scene, increased the degree of input-output asynchrony.
The lexicons were also (slightly) increased to 30 words.
Figure 3 shows an example of this Extended task.

4. EXPERIMENTAL RESULTS
While both English-to-Spanish and Spanish-to-English
translations for the Descriptive task were approached in
the paper, only the Spanish-to-English Extended task
was taken into account. In addition, it should be noted
that all connectionist experiments presented in the paper
were trained and tested using the SNNS neural simulator
[18].

4.1. Training and Recognition Data
The corpora adopted in each of the three tasks
considered were sets of text-to-text pairs each of which
consisted in a sentence in the source language and the
corresponding translation in the target language. Two
training samples of 500 and 1,500 pairs were employed
to learn each Descriptive task; 500 and 3,000 training
pairs were adopted for the Extended task.
In order to provide robust test accuracies, rates were
obtained by evaluating the learned models on three
different test sets (for each of the tasks). Each of these
test corpora consisted of 2,000 sentences which were
generated independently of those employed for training.

4.2. Criterion assessing correct translations

A source test sentence supplied to a connectionist
architecture was considered to be correctly translated if
the output provided by the model exactly coincided with
the expected translation for this source sentence. In order
to determine word accuracy, the obtained and expected
translations  corresponding to  every source  sentence  in

Spanish: un cuadrado mediano y claro y un círculo claro tocan a un círculo y un cuadrado mediano y oscuro
English: a medium light square and a light circle touch a circle and a medium dark square
Spanish: se elimina el círculo grande que está encima del cuadrado mediano y oscuro y del triángulo
English: the large circle which is above the medium dark square and the triangle is removed

Figure 3. Two Spanish-English sentences from the Descriptive and Extended MLA-MT task, respectively.

“Based on these encouraging performances, future work dealing with more 
complex limited-domain translations seems to be feasible. However, the size 
of the neural nets required for such applications (and consequently, the 
learning time) can be prohibitive”
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e = (Economic, growth, has, slowed, down, in, recent, years, .)
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f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)
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(Forcada&Ñeco, 1997; 
Castaño&Casacuberta, 1997;
Kalchbrenner&Blunsom, 2013; 
Sutskever et al., 2014; 
Cho et al., 2014)
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Topics: Sequence-to-Sequence Learning — Encoder
•  Encoder

(1)1-of-K coding of source words
(2)Continuous-space representation

(3)Recursively read words

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Topics: Sequence-to-Sequence Learning — Decoder
•  Decoder

(1)Recursively update the memory

(2)Compute the next word prob.

(3)Sample a next word
•Beam search is a good idea

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Topics: Sequence-to-Sequence Learning — Issue
• This is quite an unrealistic model.
• Why?

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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“You can’t cram the meaning of a 
whole %&!$# sentence into a 
single $&!#* vector!” Ray Mooney
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Topics: Attention-based Model
• Encoder: Bidirectional RNN

• A set of annotation vectors

• Attention-based Decoder
(1)Compute attention weights

(2)Weighted-sum of the annotation vectors

(3)Use      instead of 
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Topics: Attention-based Model
• Encoder: Bidirectional RNN

• A set of annotation vectors

• Attention-based Decoder
(1)Compute attention weights

(2)Weighted-sum of the annotation vectors

(3)Use      instead of 

{h1, h2, . . . , hT }

↵t0,t / exp(e(zt0�1, ut0�1, ht))

ct0 =
PT

t=1↵t0,tht

ct0 hT
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Topics: Attention-based Model
• How far does the attention mechanism get us?

⋆

⋆
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Topics: Very large target vocabulary (Jean et al., 2015)

• Where are we spending most time?

• Complexity: 
• Where are we spending most memory?

• Complexity: 
•        is huge, and we must compute it  

more than twenty times per sentence pairs!!
e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Topics: Very large target vocabulary (Jean et al., 2015)

• (Biased) Importance Sampling without Sampling
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Topics: Very large target vocabulary (Jean et al., 2015)

• How we do choose     ?
• Training Time:

• Divide a training corpus into     subsets
• Build a vocabulary      for each subset separately

• Test Time:
•     -most frequent words
•       words that are aligned 

to source words

(| |× )
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Topics: Very large target vocabulary (Jean et al., 2015)
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Topics: Subword-level Machine Translation (Sennrich et al., 2015)

• Character n-grams (byte pair encoding) [+ Frequent words]

system
<50k 50k-500k 500k-∞ OOV

nref=58 837 nref=2974 nref=522 nref=1079
p r f1 p r f1 p r f1 p r f1

WDict 55.8 57.7 56.7 42.3 28.6 34.1 24.5 9.0 13.2 49.1 20.9 29.3
C2-3/500k 56.1 58.2 57.1 40.1 28.2 33.1 56.0 20.7 30.2 30.2 25.3 27.5
C2-50k 57.5 56.4 56.9 44.6 31.0 36.6 43.3 30.5 35.8 22.9 29.9 26.0
BPE-60k 57.1 57.5 57.3 44.2 32.6 37.5 39.4 25.3 30.8 23.4 21.6 22.5
BPE-J90k 56.8 57.7 57.2 44.3 33.7 38.3 43.5 28.2 34.2 31.5 27.4 29.3

Table 4: Unigram precision, recall and f1 of English→German NMT ensembles on newstest2013. Ger-
man words grouped by their training set frequency rank.

system <50k 50k-500k 500k-∞ OOV
nref=56 197 nref=2915 nref=258 nref=420

p r f1 p r f1 p r f1 p r f1
WDict 51.2 55.2 53.1 32.2 19.6 24.4 23.6 10.7 14.8 10.7 5.7 7.4
C2-50k 54.9 53.2 54.0 25.0 21.6 23.2 25.0 18.0 20.9 13.9 17.1 15.3
BPE-60k 52.9 54.8 53.8 28.2 23.7 25.8 29.7 15.1 20.0 13.7 12.6 13.2
BPE-J90k 53.9 54.7 54.3 27.6 23.5 25.4 24.1 14.1 17.8 14.7 13.1 13.9

Table 5: Unigram precision, recall and f1 of English→Russian NMT ensembles on newstest2013. Rus-
sian words grouped by their training set frequency rank.

system sentence
source health research institutes
reference Gesundheitsforschungsinstitute
WDict Forschungsinstitute
C2-50k Fo|rs|ch|un|gs|in|st|it|ut|io|ne|n
BPE-60k Gesundheits|forsch|ungsinstitu|ten
BPE-J90k Gesundheits|forsch|ungsin|stitute
source asinine situation
reference dumme Situation
WDict asinine situation→ UNK→ asinine
C2-50k as|in|in|e situation→ As|in|en|si|tu|at|io|n
BPE-60k as|in|ine situation→ A|in|line-|Situation
BPE-J90K as|in|ine situation→ As|in|in-|Situation

Table 6: English→German translation examples.
“|” marks subword boundaries.

The segmentation of the BPE system with a jointly
learned segmentation (BPE-J90k) is more consis-
tent (pra|krit|i→пра|крит|и (pra|krit|i)).

6 Conclusion

The main contribution of this paper is that we
show that neural network encoder–decoder trans-
lation systems are able to translate rare and un-
seen words by representing them as a sequence
of subword units. This is both simpler and more
effective than using an external translation sys-
tem (even just a simple dictionary) as a back-off
model. The NMT system is relatively robust re-
garding the type of subword unit, and we observe
similar performance gains over the baseline with

system sentence
source Mirzayeva
reference Мирзаева (Mirzaeva)
WDict Mirzayeva → UNK→Mirzayeva
C2-50k Mi|rz|ay|ev|a→ Ми|рз|ае|ва (Mi|rz|ae|va)
BPE-60k Mirz|ayeva → Мир|за|ева (Mir|za|eva)
BPE-J90k Mir|za|yeva → Мир|за|ева (Mir|za|eva)
source rakfisk
reference ракфиска (rakfiska)
WDict rakfisk → UNK→ rakfisk
C2-50k ra|kf|is|k→ ра|кф|ис|к (ra|kf|is|k)
BPE-60k rak|f|isk → пра|ф|иск (pra|f|isk)
BPE-J90k rak|f|isk → рак|ф|иска (rak|f|iska)

Table 7: English→Russian translation examples.
“|” marks subword boundaries.

character bigrams, character trigrams, or variable-
length units. In regards to efficiency, we achieve
the most compact representation of the text and
vocabulary with a word segmentation technique
based on byte pair encoding.
Our analysis shows that not only out-of-

vocabulary words, but also rare in-vocabulary
words are translated poorly by our baseline NMT
system. We find that for rare words, a sub-
word representation improves the model’s ability
to learn their translation. We expect the optimal
point at which to switch from full-word to sub-
word representation to depend on the language
pair and the amount of training data. In this work,
our choice of vocabulary size is somewhat arbi-
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Topics: Subword-level Machine Translation (Sennrich et al., 2015)

• Character n-grams (byte pair encoding) [+ Frequent words]
BLEU

vocabulary newstest2014 newstest2015
name segmentation shortlist source target single ens-4 single ens-4
syntax-based (Sennrich and Haddow, 2015) 22.6 - 24.4 -
WUnk - - 300 000 500 000 17.1 18.8 19.9 21.7
WDict - - 300 000 500 000 18.1 19.9 21.1 23.1
MDict morfessor - 300 000 500 000 18.1 20.0 20.5 22.7
C2-3/500k char-bigrams 3/500 000 310 000 510 000 18.4 20.3 21.8 23.0
C2-50k char-bigrams 50 000 60 000 60 000 18.7 20.7 21.9 23.9
C3-50k char-trigrams 50 000 100 000 100 000 18.9 20.5 21.5 23.9
BPE-60k BPE - 60 000 60 000 18.6 20.8 21.1 23.6
BPE-J90k BPE (joint) - 90 000 90 000 19.4 20.8 22.2 23.7

Table 2: English→German translation performance (BLEU) on newstest2014 and newstest2015 test sets.
Ens-4: ensemble of 4 models. Best NMT system in bold.

dom variation.
The system with morfessor segmentation

MDict yields no improvement over the baseline,
and was not pursued further. However, we do
observe improvements over the baseline from us-
ing character n-grams to represent rare words.
The subword system closest to WDict is the sys-
tem C2-3/500k with the same unsegmented vo-
cabulary of 300 000 source and 500 000 target
words, with out-of-vocabulary words represented
via character bigrams, for which we observe an av-
erage improvement of 0.3 BLEU over our baseline.
Reducing the size of the shortlist to 50k (C2-50k)
yields further improvements, for an average BLEU
improvement of 0.8 over the baseline. Character
trigrams (C3-50k), and BPE with a jointly learned
encoding (BPE-J90k) yield similar improvements
over the baseline than character bigrams, which
indicates that the Neural network robustly learns
from different subword representations. On av-
erage, BPE-J90k outperforms BPE with indepen-
dent encodings (BPE-60k).
The performance of our NMT systems is below

our syntax-based baseline by Sennrich and Had-
dow (2015). We note that Jean et al. (2015b) re-
port a score of 24.8 BLEU on newstest2015, using
an ensemble of 8 NMT models. We are confident
that our improvements to the translation of rare
words are orthogonal to improvements achievable
through other improvements in the network archi-
tecture, training algorithm, or better ensembles.
We test a subset of the systems on the language

pair English→Russian. Results are shown in Ta-
ble 3. The back-off dictionary is less effective for
this language pair, partially because the back-off

dictionary is incapable of transliterating unknown
names. The quality of the WDict baseline is sub-
stantially below the phrase-based state-of-the-art:
the English→Russian system by Haddow et al.
(2015) outperforms WDict by 4.5 BLEU on new-
stest2014, and by 3.3 BLEU on newstest2015. The
subword models are a step towards closing this
gap, and BPE-J90k yields an average improve-
ment of 1.5 BLEU over WDict.
As a further comment on our translation results,

we want to emphasize that performance variabil-
ity is still an open problem with NMT. On our de-
velopment set, we observe differences of up to 1
BLEU between different models. For single sys-
tems, we report the results of the model that per-
forms best on dev (out of 4), which has a stabiliz-
ing effect, but how to control for randomness de-
serves further attention in future research. To eval-
uate the effect of different subword segmentation
strategies on the translation of rare and unknown
words, we conduct a more focused analysis.

5 Analysis

5.1 Unigram accuracy
Our main claims are that the translation of rare
and unknown words is poor in state-of-the-art
NMT models, and that subword models improve
the translation of these word types. We empir-
ically verify these claims by measuring clipped
unigram precision and recall of words of differ-
ent frequency.9 We report the harmonic mean be-
tween precision and recall, f1, and we plot target-
side words sorted by their frequency in the training

9Clipped unigram precision is essentially 1-gram BLEU
without brevity penalty.
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Topics: Subword-level Language Modelling (Kim et al., 2015; Ling et al., 2015)

• Directly processing characters
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Topics: Very large target vocabulary (Jean et al., 2015)

→ →

→

→ →

→

→ →

→

Is neural MT particularly weak when translating to English?
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Topics: Statistical Machine Translation - Recap

•  
• Log-linear model 
• Feature function 

• Steps:
(1) Experts engineer useful features
(2) Use a simple log-linear model 
(3) Use a strong, external language model

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Mono
Corpora

Parallel
Corpora

Feature
f 1

Feature
f 2

Feature
f 3

Feature
fN

...

+
w1 w2 w3 wN

( | ) ≈
∑

ω ( , ) +

log p(f |e) ⇡
NX

n=1

fn(e, f) + C

fn(e, f)
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Topics: Incorporating Target Language Model (Gulcehre&Firat et al., 2015)

• Shallow Fusion: Log-Linear Interpolation between TM and LM
log p(yt|y<t, x) = log p

TM
(yt|y<t, x) + �log p

LM
(yt|y<t)
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Topics: Incorporating Target Language Model (Gulcehre&Firat et al., 2015)

• Shallow Fusion: Log-Linear Interpolation between TM and LM

• Advantages:
• Single tunable parameter 

• Disadvantages:
• Is is really linear?

�

log p(yt|y<t, x) = log p

TM
(yt|y<t, x) + �log p

LM
(yt|y<t)
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Topics: Incorporating Target Language Model (Gulcehre&Firat et al., 2015)

• Deep Fusion: Nonlinear interpolation between LM and TM
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Topics: Incorporating Target Language Model (Gulcehre&Firat et al., 2015)

• Deep Fusion: Nonlinear interpolation between LM and TM

• Advantages
• No linearity assumed: the core philosophy of deep learning
• Context-Dependent Fusion

• Disadvantages
• Works only with a continuous-space LM: NLM or RNN-LM
• Computationally demanding (comparatively to shallow fusion)
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Topics: Deep Fusion of Target Language Model (Gulcehre&Firat et al., 2015)

→ ⋆→

→

⋆

→ ⋆→

→

⋆

→ ⋆→

→

⋆
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• Multi-task learning for multiple language translation (Dong et al., 2015)
• Neural Machine Translation of Rare Words with Subword Units (Sennrich et al., 2015)
• Variable-Length Word Encodings for Neural Translation Models (Chitnis&DeNero, 2015)
• Addressing the rare word problem in neural machine translation (Luong et al., 2015)
• Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
• and the list continues…

Advances in natural language processing 
by Hirschberg & Manning (2015)

.. an extremely 
promising approach 

to MT through .. deep 
learning ..



What next?
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MULTILINGUAL TRANSLATION
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Dong et al. (2015)



TOWARD DISCOURSE-LEVEL MT
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Hierarchical Recurrent Encoder–Decoder (HRED) by Sordoni et al. (2015)



Neural MT beyond MT
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• Memory Networks (Weston et al., 2014)
• Neural Turing Machines (Graves et al., 2014)
• Pointer Networks (Vinyals et al., 2015)
• Grammar as a Foreign Languages (Vinyals et al., 2014)
• Teaching machines to read and comprehend (Hermann et al., 2015)
• Reasoning about Entailment with Neural Attention (Rocktaschel et al., 2015)
• and the list continues…

Any supervised 
learning task is a 
translation task



Going beyond Natural Languages
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Is a human language special? 
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Topics: Beyond Natural Languages  
          — Image Caption Generation

•Task: conditional language modelling

•Encoder: convolutional network
•Pretrained as a classifier or autoencoder

•Decoder: recurrent neural network
•RNN Language model
•With attention mechanism (Xu et al., 2015)
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Topics: Beyond Natural Languages — Image Caption Generation (Examples)
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Topics: Beyond Natural Languages — Image Caption Generation (Examples)
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Topics: Beyond Natural Languages — Attention Models 

•End-to-End Speech Recognition (Chorowski et al., 2015; Chan et al., 2015) 

•Video Description Generation (Yao et al., 2015) 

•Discrete Optimization (Vinyals et al., 2015) 

•and many more…  
(Cho et al., 2015) and references therein

8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D
convolutional network, shown in Fig. 6. Unlike the usual
convolutional network which often works only spatially over a
two-dimensional image, the 3-D convolutional network applies
its (local) filters across the spatial dimensions as well as the
temporal dimensions. Furthermore, those filters work not on
pixels but on local motion statistics, enabling the model to
concentrate on motion rather than appearance. Similarly to
the strategy from Sec. II-D, the model was trained on larger
video datasets to recognize an action from each video clip, and
the activation vectors from the last convolutional layer were
used as context. The authors of [23] suggest that this encoder
extracts more local temporal structures complementing the
global structures extracted from the frame-wise application of
a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in
[22] was used with the content-based attention mechanism in
Eq. (16).

2) Experimental Result: In [23], this approach to video
description generation has been tested on two datasets; (1)
Youtube2Text [54] and (2) Montreal DVS [55]. They showed
that it is beneficial to have both types of encoders together
in their attention-based encoder–decoder model, and that
the attention-based model outperforms the simple encoder–
decoder model. See Table IV for the summary of the evalua-
tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS
ON YOUTUBE2TEXT AND MONTREAL DVS. (?) HIGHER THE BETTER.

(�) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR? Perplexity� METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the
attention-based model, the attention mechanism applied to the
task of video description also provides a straightforward way
to inspect the inner workings of the model. See Fig. 7 for
some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight ↵

t
j (see Eq. (11)) for the frame when the

corresponding word (color-coded) was generated. Reprinted from [23].
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•Department of Computer Science 

•Ph.D. Programme: Application dl. 12th December
•Center for Data Science 

•M.Sc. Programme in Data Science: Application dl. 4th Februrary



Teaching Machines to Read, Comprehend 
and Answer
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Based on (Hermann et al., 2015; Blunsom, 2015)
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Topics: Teaching machines to read and comprehend

Supervised Reading Comprehension

CNN article:

Document The BBC producer allegedly struck by Jeremy Clarkson will not
press charges against the “Top Gear” host, his lawyer said
Friday. Clarkson, who hosted one of the most-watched
television shows in the world, was dropped by the BBC
Wednesday after an internal investigation by the British
broadcaster found he had subjected producer Oisin Tymon “to
an unprovoked physical and verbal attack.” . . .

Query Producer X will not press charges against Jeremy Clarkson, his
lawyer says.

Answer Oisin Tymon

We formulate Cloze style queries from the story paraphrases.
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Topics: Teaching machines to read and comprehend  
          — Deep LSTM Reader

•Document Reader

•Summary of the document: 
•Query Reader

•Summary of the query: 
•Answer selection

Deep LSTM Reader

Mary went to X visited EnglandEngland |||

g
ht = f(ht�1, wt), for all t = 1, . . . , T

hT

zt = f(zt�1, w
0
t), for all t = 1, . . . , T 0

zT 0

No!!!

p(a| {wt}Tt=1 , {wt0}T
0

t0=1) = ga(hT , zT )
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Topics: Teaching machines to read and comprehend  
          — Attentive Reader

•Document Reader: BiRNN
•Annotation vectors: 

•Query Reader:
•Answer selection
•Attention mechanism
•Query-dependent document summary
•Answer selection: 

zT 0

The Attentive Reader

r
s(1)y(1)

s(3)y(3)s(2)y(2)

u

g

s(4)y(4)

Mary went to X visited EnglandEngland

{h1, h2, . . . , hT }

↵t / e(ht, zT 0)

c =
PT

t=1↵tht

p(a| {wt}Tt=1 , {wt0}T
0

t0=1) = ga(zT 0 , c)
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Topics: Teaching machines to read and comprehend  
          — Attentive Reader (Examples)

•Visualize the attention

The Attentive Reader: Predicted: ent49, Correct: ent49



Connectionist Approach to 
Natural Language Understanding
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The relevance of the connectionist model to natural language 
processing is clear enough. The traditional stratificational 
approach to parsing and generation (morphology, syntax, 
semantics) .. is not seriously accepted .. as a psychologically real 
model of how humans understand and communicate.

Hutchins and Somers (1992)
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With a neural network, we don’t encode any hard principles. The 
model infers the important structures, properties and 
relationships directly from raw data, in a way that allows it to 
best describe achieve its objective.

Hill (2015)
https://medium.com/@felixhill/deep-consequences-fa823a588e97

https://medium.com/@felixhill/deep-consequences-fa823a588e97
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Topics: No such thing as (universal) word embeddings
• Word embeddings are nothing but the first layer weight matrix

• Objective functions matter a lot (Hill et al., 2014; Hill et al., 2015)

Don’t hammer everything with monolingual word embeddings!!!
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Topics: Compositionality naturally arises  

Cho et al. (2014)



CONNECTIONIST NLP
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Topics: Neural net will capture underlying structures
• As long as the structures are needed to achieve the goal


