
Deep Clustering: 
Discriminative embeddings for 
segmentation and separation

John Hershey 
Zhuo Chen 

Jonathan Le Roux 
Shinji Watanabe



Problem to solve: general audio separation

• Goal:Analyze complex audio scene into its components  
– Different sound may be overlapping and partially obscure each other  
– Number of sound may be unknown 
– Sound types may be known or unknown 
– Multiple instances of a particular type may be present   

• Many potential applications 
– Use separated components: enhancement, remix, karaoke, etc. 
– Recognition & detection: speech recognition, surveillance, etc. 
– Robots 

• robots need to handle the “cocktail-party problem” 
• need to be aware of sound in environment   
• no easy sensor-based solution for robots (e.g., close talking microphone) 
• humans can do this amazingly well 

• More important goal: understand how human brain work



Why is general audio separation difficult?

• Incredible variety of sound types 
– Human voice: speech, singing… 
– Music: many kinds of instruments (strings, woodwind, percussion) 
– Natural sound: animals, environmental… 
– Man-made sounds: mechanical, sirens…  
– Countless unseen novel sounds 

• The “modeling problem” 
– Difficult to make models for each type of sound 
– Difficult to make one big model that applies to any sound type 
– Sounds obscure each other in a state dependent way 

• Which sound dominates a particular part of the spectrum depends on the states of all sounds. 
• Knowing which sound dominates makes it easy to determine states 
• Knowing the states makes it easy to determine which sound dominates 
• Chicken and egg problem:  the joint problem is intractable!



Previous attempts

• CASA (1990s~early 2000s) 
– Segment spectrogram based on Gestalt “grouping cues” 
– Usually no explicit model of the sources  
– Advantage: potentially flexible generalization 
– Disadvantage: rule based, difficult to model “top-down” constraints.  

• Model based systems (early 2000s ~ now) 
– Examples: non-negative matrix factorization, factorial hidden Markov models 
– Model assumptions hardly ever match data 
– Inference is intractable, difficult to discriminatively train 

• Neural networks  
– Work well for known target source type, but difficult to apply to many types 
– Problem of structuring the output labels in the case of multiple instances of the same type 
– Unclear how to handle novel sound types or classes.  No instances seen during training 
– Some special type of adaptation is needed
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Problems of generative model

• Trade-offs between speed 
and accuracy  

• Limitation to separate 
similar classes 

• More broadly, no way the 
brain is doing like this



Neural network works well for some tasks in 
source separation

• State-of-the-art performance in across-type separation 
– Speech enhancement: Speech vs. Noise 
– Singing music separation: Singing vs. Music 

 
 

 

•  Auto-encoder style Objective function: 
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However, 

• Limitation in scaling up for multiple 
sources 
– When more than two sources, which target to use? 
– How to deal with unknown number of sources? 

• Output permutation problem 
– When the sources are similar 
– e.g. when separating mixture of speech from two 

speakers, all parts are speech,  then which slot 
should identify which speaker?



Separating mixed speakers—a slightly harder 
problem

• Mixture of speech from two speakers 
– Sources have similar characteristics 
– Interested in all sources 
– Simplest example of a cocktail party problem 

• Investigated several ways of training neural network 
On small chunks of signal: 
– Use oracle permutation as clue 

• Train the network by back-propagating difference with best-matching speaker 
– Use strongest amplitude as clue 

• Train the network to separate the strongest source



The neural network failed to separate speakers
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Clustering Approaches to Separation

• Clustering approaches handle the 
permutation problem 

• CASA approaches cluster based on 
hand-crafted similarity features: 

• Proximity in time, frequency 
• – Common amplitude modulation 
• – Common frequency modulation 
• – Harmonicity using pitch tracking 

• Spectral clustering was used to combine 
CASA features via multiple kernel learning 

• Catch-22 with features: whole patch of 
context needed, but this overlaps multiple 
sources



From class-based to partition-based objective

• Class-based objective: estimate the class of an object 
– Learn from training class labels 
– Need to know object class labels 
– Supervised model 
– E.g. :  

• Partition-based objective: estimate what belongs together 
– Learn from labels of partitions 
– No need to know object class labels 
– Semi-supervised model 
– E.g. :    
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Learning the affinity

• One could thus think of directly estimating affinities using some model: 

• For example, by minimizing the objective: 

• But, affinity matrices are large 

• Factoring them can be time consuming with complexity  

• Current speedup methods for spectral clustering such as Nyström method 
use low-rank approximation to  

• If the rank of the approximation is             , then we can compute the 
eigenvectors of       in                 -- Much faster!



Learning the affinity

• Instead of approximating a high-rank affinity matrix, we train 
the model to produce a low-rank one, by construction: 

    where we estimate                      , a K-dimensional embedding 

• We propose to use deep networks 
– Deep networks have recently made  

amazing advances in speech recognition 
– Offer a very flexible way of learning good  

intermediate representations 
– Can be trained straightforwardly using  

stochastic gradient descent on 



Affinity-based objective function

where: 

–             : the output of the network, K-dimensional embedding for each time-frequency 
bin.  

–                   : the class indicator vector for each time-frequency bin        

– High-dimensional embedding 
– First term directly related with K-

means objective 
– Second term “spreads” all the data 

points from each other



Avoiding the N x N affinity matrix

• The number of samples N is orders of magnitude larger than 
the embedding dimension K 
– e.g., for a 10s audio clip, N=129000 T-F bins (256 fft, 10ms hop) 

Affinity matrix has 17 billion entries! 

• Low rank structure of        can avoid saving full affinity matrix  
–  When computing the objective function: 

–  When computing the derivative:



Evaluation on speaker separation task

• Network 
– Two BLSTM layers neural network with various layer sizes 

• Data 
– Training data  

• 30 h of mixtures of 2 speakers randomly sampled from 103 speakers in WSJ dataset 
• Mixing SNR from -5dB to 5dB 

– Evaluation data 
• Closed speaker set: 10 h of mixtures of other speech from the same 103 speakers 
• Open speaker set: 5 h of mixtures from 16 other speakers 

• Baseline methods 
– Closed speaker experiments: Oracle dictionary NMF 
– CASA 
– BLSTM auto encoder with different permutation strategies



Significantly better than the baseline



Audio example

• Different gender mixture  

Oracle NMF results    Deep clustering result 

• Same gender mixture  

Oracle NMF results     Deep clustering results



The same net works on three speakers mixtures

• The network was trained with two speaker mixtures only! 



Separation three-speaker mixture

• Data 
– Training data  

• 10 h of mixtures of 3 certain speakers sampled from WSJ dataset 
• Mixing SNR from -5dB to 5dB 

– Evaluation data 
• 4 h of mixtures of other speech from the same speakers



Single speaker separation

• Data 
– Training data  

• 10 h of mixtures of one speaker sampled from 103 speakers in WSJ dataset 
• Adapted data: 10 h of one certain speaker 
• Mixing SNR from -5dB to 5dB 

– Evaluation data 
• Closed speaker: 5 h of mixtures of other speech from the same 103 speaker 
• Closed speaker: 3 h of mixtures of other 16 speaker 
• Adapted data: 10 h of other speech of one certain speaker male female

mixed
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source 2



Possible extensions

• Different network options 
– Convolutional architecture 
– Multi-task learning 
– Different pre-training 

• Joint training through the clustering  
– Combining with deep unfolding 
– Compute gradient through the spectral clustering 

• Different tasks 
– General audio separation



Thanks a lot!


