Deep Clustering: Discriminative embeddings for segmentation and separation

> John Hershey Zhuo Chen Jonathan Le Roux Shinji Watanabe

Problem to solve: general audio separation

- Goal: Analyze complex audio scene into its components
 - Different sound may be overlapping and partially obscure each other
 - Number of sound may be unknown
 - Sound types may be known or unknown
 - Multiple instances of a particular type may be present
- Many potential applications
 - Use separated components: enhancement, remix, karaoke, etc.
 - Recognition & detection: speech recognition, surveillance, etc.
 - Robots
 - robots need to handle the "cocktail-party problem"
 - · need to be aware of sound in environment
 - no easy sensor-based solution for robots (e.g., close talking microphone)
 - · humans can do this amazingly well
- More important goal: understand how human brain work

Why is general audio separation difficult?

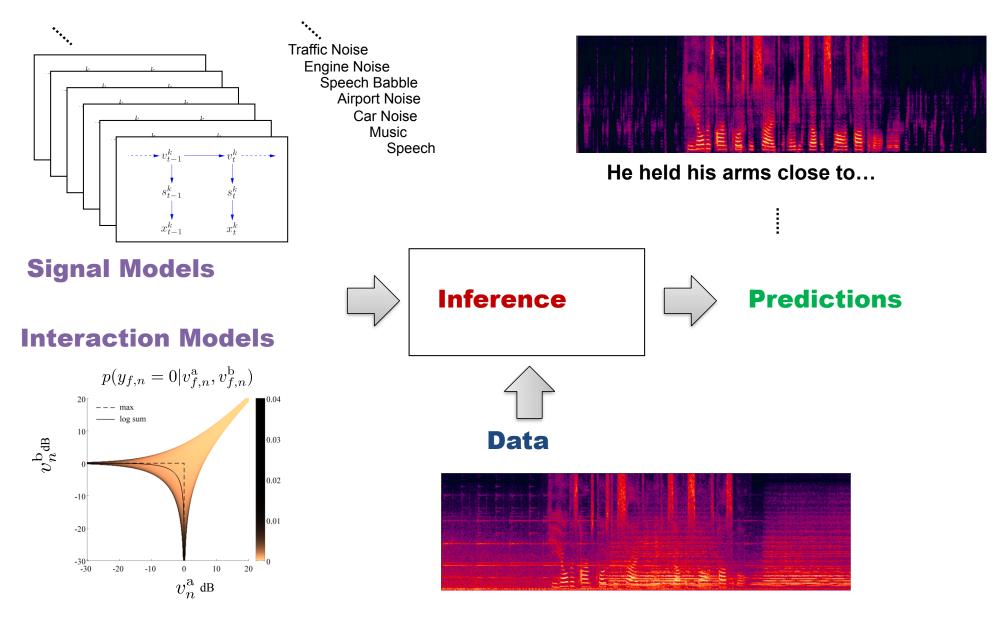
• Incredible variety of sound types

- Human voice: speech, singing...
- Music: many kinds of instruments (strings, woodwind, percussion)
- Natural sound: animals, environmental...
- Man-made sounds: mechanical, sirens...
- Countless unseen novel sounds
- The "modeling problem"
 - Difficult to make models for each type of sound
 - Difficult to make one big model that applies to any sound type
 - Sounds obscure each other in a state dependent way
 - Which sound dominates a particular part of the spectrum depends on the states of all sounds.
 - · Knowing which sound dominates makes it easy to determine states
 - Knowing the states makes it easy to determine which sound dominates
 - Chicken and egg problem: the joint problem is intractable!

Previous attempts

- CASA (1990s~early 2000s)
 - Segment spectrogram based on Gestalt "grouping cues"
 - Usually no explicit model of the sources
 - Advantage: potentially flexible generalization
 - Disadvantage: rule based, difficult to model "top-down" constraints.
- Model based systems (early 2000s ~ now)
 - Examples: non-negative matrix factorization, factorial hidden Markov models
 - Model assumptions hardly ever match data
 - Inference is intractable, difficult to discriminatively train
- Neural networks
 - Work well for known target source type, but difficult to apply to many types
 - Problem of structuring the output labels in the case of multiple instances of the same type
 - Unclear how to handle novel sound types or classes. No instances seen during training
 - Some special type of adaptation is needed

Model-based Source Separation



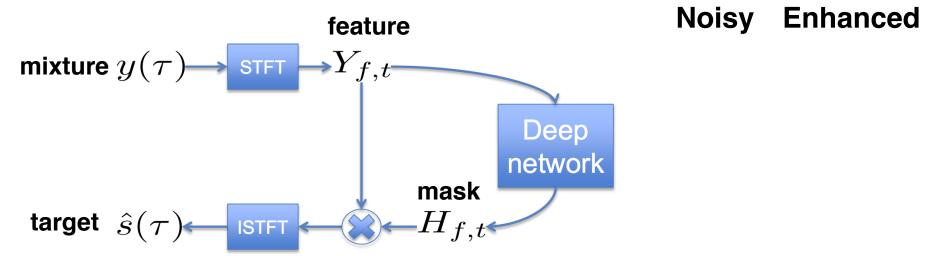
Problems of generative model

- Trade-offs between speed and accuracy
- Limitation to separate similar classes
- More broadly, no way the brain is doing like this



Neural network works well for some tasks in source separation

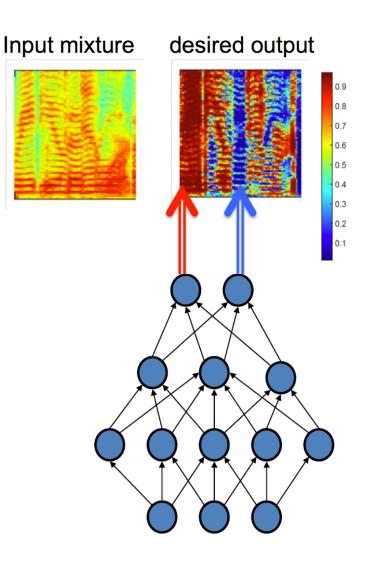
- State-of-the-art performance in across-type separation
 - Speech enhancement: Speech vs. Noise
 - Singing music separation: Singing vs. Music



• Auto-encoder style Objective function: $L = \sum ||H_{f,t} - F(Y_{f,t})||^2$

However,

- Limitation in scaling up for multiple sources
 - When more than two sources, which target to use?
 - How to deal with unknown number of sources?
- Output permutation problem
 - When the sources are similar
 - e.g. when separating mixture of speech from two speakers, all parts are speech, then which slot should identify which speaker?

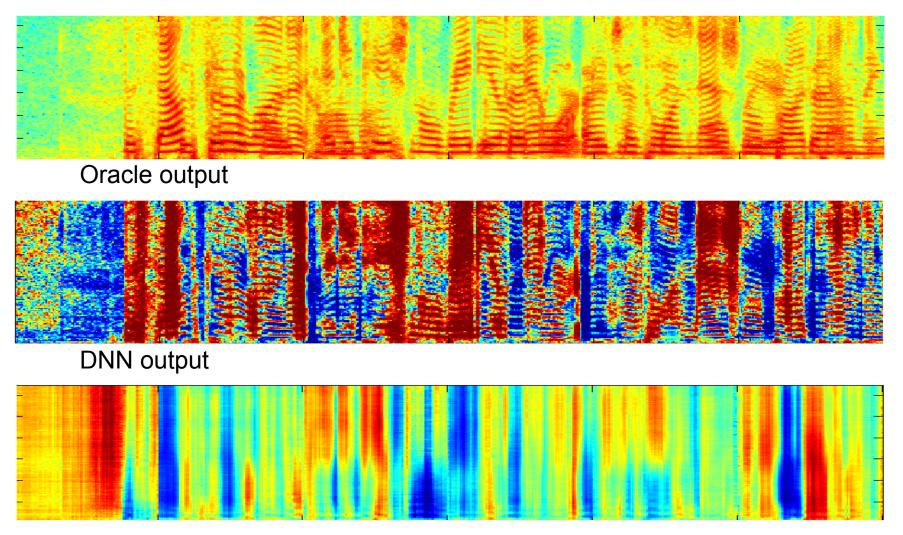


Separating mixed speakers—a slightly harder problem

- Mixture of speech from two speakers
 - Sources have similar characteristics
 - Interested in all sources
 - Simplest example of a cocktail party problem
- Investigated several ways of training neural network On small chunks of signal:
 - Use oracle permutation as clue
 - Train the network by back-propagating difference with best-matching speaker
 - Use strongest amplitude as clue
 - Train the network to separate the strongest source

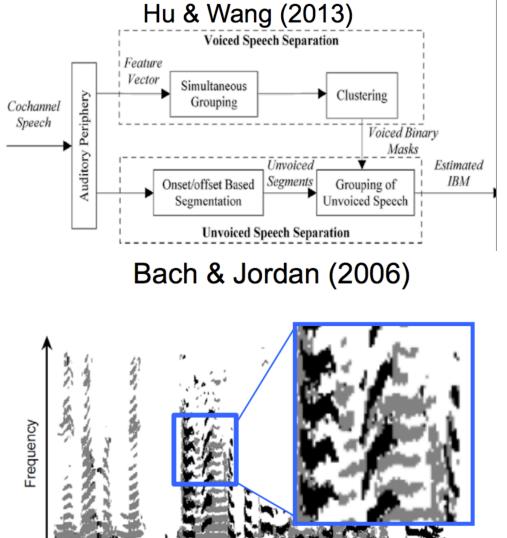
The neural network failed to separate speakers

Input mixture



Clustering Approaches to Separation

- Clustering approaches handle the permutation problem
- CASA approaches cluster based on hand-crafted similarity features:
- Proximity in time, frequency
- Common amplitude modulation
- Common frequency modulation
- · Harmonicity using pitch tracking
- Spectral clustering was used to combine CASA features via multiple kernel learning
- Catch-22 with features: whole patch of context needed, but this overlaps multiple sources



Time

From class-based to partition-based objective

- Class-based objective: estimate the class of an object
 - Learn from training class labels
 - Need to know object class labels
 - Supervised model
 - E.g. : $C(\theta) = |V Y|_{\rm F}^2 \text{target}$
- Partition-based objective: estimate what belongs together

-model

- Learn from labels of partitions
- No need to know object class labels
- Semi-supervised model

- E.g. : $C(\theta) = \sum_{Y_j = Y_i} |V_i - V_j|_{\rm F}^2 \text{ target}$

Learning the affinity

• One could thus think of directly estimating affinities using some model:

$$\hat{A}_i = g_\theta(X_i)$$

• For example, by minimizing the objective:

$$\mathcal{L}(\theta) = |A - \hat{A}|_F^2$$

- But, affinity matrices are large
- Factoring them can be time consuming with complexity $\mathcal{O}(N^3)$
- Current speedup methods for spectral clustering such as Nyström method use low-rank approximation to \hat{A}_i
- If the rank of the approximation is K < N, then we can compute the eigenvectors of \hat{A}_i in $\mathcal{O}(K^2N)$ -- Much faster!

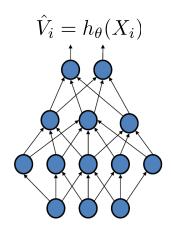
Learning the affinity

 Instead of approximating a high-rank affinity matrix, we train the model to produce a low-rank one, by construction:

$$\hat{A} = VV^T$$

where we estimate $V_i = h_{\theta}(X_i)$, a *K*-dimensional embedding

- We propose to use deep networks
 - Deep networks have recently made amazing advances in speech recognition
 - Offer a very flexible way of learning good intermediate representations
 - Can be trained straightforwardly using stochastic gradient descent on



Affinity-based objective function

$$\begin{split} C(\theta) &= |VV^T - YY^T|_{\rm F}^2 = \sum_{i,j:y_i = y_j} (\langle v_i, v_j \rangle - 1)^2 + \sum_{i,j:y_i \neq y_j} (\langle v_i, v_j \rangle - 0)^2, \\ &= \sum_{i,j:y_i = y_j} |v_i - v_j|^2 + \sum_{i,j} \frac{1}{4} \left(|v_i - v_j|^2 - 2 \right)^2, \\ s.t \sum_k |v_{i,k}|^2 &= 1, \quad \forall i \end{split}$$
 - High-dimensional embedding
- First term directly related with K-means objective
- Second term "spreads" all the data points from each other

- where:
 - $V \in \mathcal{R}^{N \times K}$: the output of the network, K-dimensional embedding for each time-frequency bin.
 - $Y \in \mathcal{R}^{N \times C}$: the class indicator vector for each time-frequency bin

Avoiding the N x N affinity matrix

- The number of samples N is orders of magnitude larger than the embedding dimension K
 - e.g., for a 10s audio clip, N=129000 T-F bins (256 fft, 10ms hop) Affinity matrix has 17 billion entries!

- Low rank structure of VV^{T} can avoid saving full affinity matrix
 - When computing the objective function:

$$C = |VV^{T} - YY^{T}|_{\mathrm{F}}^{2} = |V^{T}V|_{\mathrm{F}}^{2} - 2|V^{T}Y|_{\mathrm{F}}^{2} + |Y^{T}Y|_{\mathrm{F}}^{2}$$

- When computing the derivative:

$$\frac{\partial C}{\partial V^T} = 4V(V^T V) - 4Y(Y^T V)$$

Evaluation on speaker separation task

• Network

- Two BLSTM layers neural network with various layer sizes

Data

- Training data
 - 30 h of mixtures of 2 speakers randomly sampled from 103 speakers in WSJ dataset
 - Mixing SNR from -5dB to 5dB
- Evaluation data
 - Closed speaker set: 10 h of mixtures of other speech from the same 103 speakers
 - Open speaker set: 5 h of mixtures from 16 other speakers
- Baseline methods
 - Closed speaker experiments: Oracle dictionary NMF
 - CASA
 - BLSTM auto encoder with different permutation strategies

Significantly better than the baseline

method	СС	OC
oracle NMF	5.1	-
CASA	2.9	3.1
DC oracle k-means	6.5	6.5
DC global k-means	5.9	5.8
BLSTM stronger	1.3	1.2
BLSTM permute	1.3	1.3
BLSTM permute*	1.4	1.2

Table 1: SDR improvements (dB) for different separation methods

Table 2: SDR improvements (dB) for different embedding dimensions K and activation functions

	СС		OC		
model	DC oracle	DC global	DC oracle	DC global	
K = 5	-0.8	-1.0	-0.7	-1.1	
K = 10	5.2	4.5	5.3	4.6	
K = 20	6.3	5.6	6.4	5.7	
K = 40	6.5	5.9	6.5	5.8	
K = 60	6.0	5.2	6.1	5.3	
K = 40 logistic	6.6	5.9	6.6	6.0	

Audio example

• Different gender mixture

Oracle NMF results

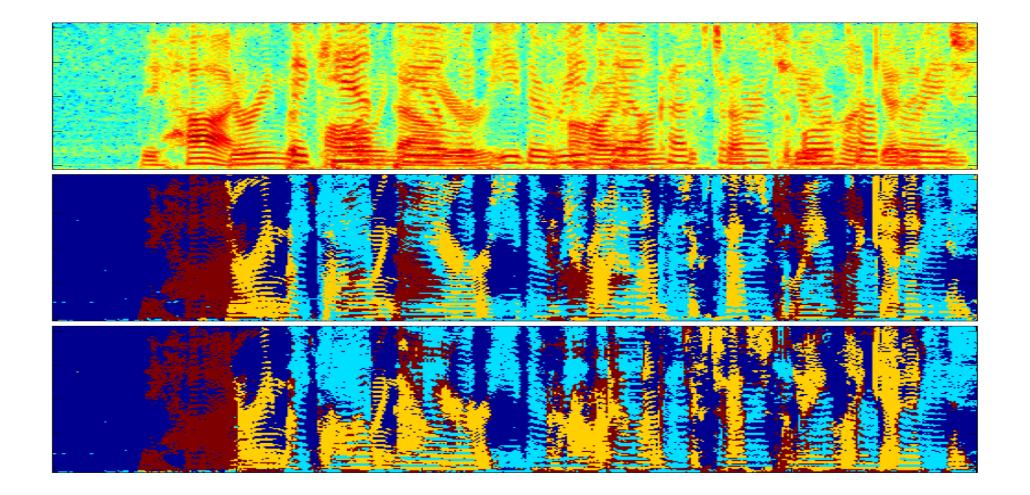
Deep clustering result

• Same gender mixture

Oracle NMF results

Deep clustering results

The same net works on three speakers mixtures



• The network was trained with two speaker mixtures only!

Separation three-speaker mixture

Data

- Training data
 - 10 h of mixtures of 3 certain speakers sampled from WSJ dataset
 - Mixing SNR from -5dB to 5dB
- Evaluation data
 - 4 h of mixtures of other speech from the same speakers

Table 3: SDR improvement (dB) for mixtures of three speakers. Left: three-speaker separation using DC network trained on twospeaker mixtures. Right: separation of three known speakers.

method	MS-CC	MS-OC	method	3S-CC
oracle NMF	4.4	-	oracle NMF	4.5
DC oracle	3.5	2.8	DC oracle	7.0
DC global	2.7	2.2	DC global	6.9
U			BLSTM stack	6.8

Single speaker separation

Data

- Training data
 - 10 h of mixtures of one speaker sampled from 103 speakers in WSJ dataset
 - Adapted data: 10 h of one certain speaker
 - Mixing SNR from -5dB to 5dB
- Evaluation data
 - Closed speaker: 5 h of mixtures of other speech from the same 103 speaker
 - Closed speaker: 3 h of mixtures of other 16 speaker
 - · Adapted data: 10 h of other speech of one certain speaker

Table 2: SDR improvements (dB) for female mixtures

Table 3: SDR improvements (dB)

method	CC	OC
DC oracle k-means	0.18	-1.91
DC global k-means	-0.10	-2.54
Adapted DC oracle k-means	-1.22	-2.03
Adapted DC global k-means	-1.19	-2.73
fvf trained DC oracle k-means	0.66	-0.18
fvf trained DC global k-means	-0.24	-2.12
Adapted fvf trained DC oracle k-means	0.80	-0.79
Adapted fvf trained DC global k-means	0.52	-1.54
Certain spk DC oracle k-means	2.39	-
Certain spk DC global k-means	0.97	-

1		-	
method	CC	OC	mixed
DC oracle k-means	0.18	-1.67	
DC global k-means	-0.02	-2.07	
CASA	-2.6	-2.7	
Adapted DC oracle k-means	-1.04	-1.6	-
Adapted DC global k-means	-1.05	-2.58	source '
			JUNIUU

source 2

female

male

Possible extensions

- Different network options
 - Convolutional architecture
 - Multi-task learning
 - Different pre-training
- Joint training through the clustering
 - Combining with deep unfolding
 - Compute gradient through the spectral clustering
- Different tasks
 - General audio separation

Thanks a lot!