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Blind Machine Separation

Problem we want to solve:
— Single microphone blind source separation & deconvolution
— No prior on sources, mixing, dynamics

Problem we can solve:

— Blind source separation
« Equal number of sources and sensors, no additive noise
 Instantaneous and linear mixing, stationary and independent sources
Problem we should solve:

— Acoustic multichannel blind deconvolution:
» Equal number of sources and sensors, no additive noise,
« Convolved linear mixing, nonstationary and independent signals

Problem we may solve:

— Binaural Source Separation
» Two sensors, multiple sources
» Convolved linear mixing, strong source priors



Blind Source Separation
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Linear & Instantaneous

— Ais invertible > — .
l |
S X=AS u=Wx
Sources Observations Recovered sources
Independent & stationary No additive noise

- Signal Processing: Adaptive Filtering with nonlinear learning rule
- Statistics: Generative model with hidden variables: Synthesis & Analysis Model
- Communications: Encoding and decoding model for channel estimation




Independent Component Analysis

Essence:

— Contrast function that relates to mutual information & constraint optimization

or gradient methods

Algorithms (classic) to standard ICA problem:

Joint Approximate Diagonalization Equivariance (JADE) [Cardoso, 1993]
Cumulant maximization [Common, 1994]

Infomax [Bell & Sejnowski, 1995]

Likelihood maximization [Pham 1992, Pearlmutter & Parra 1996]

Fixed point ICA [Hyvarinen & Oja, 1997]

Challenges:

Noisy Observations (nonstationary noise)

Non square mixing (overcomplete and undercomplete models)
Nonlinear mixing

Dependent sources



Multichannel Blind Deconvolution

Yellin & Weinstein, 1996
Torkkola, 1997
Lambert, 1997
Douglas, 1999

Filter Extension of Information Maximization i
y1

Maximize Entropy H(y) y=g(u)
A(2) W(z)
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Time-Delayed Decorrelation

(Tong et al., 1992; Belouchrani et al. 1993, Molgedey & Schuster, 1994):
Joint diagonalization of the covariance matrix and time-delayed cov.-matrix.

Co=(xx®")  C.=(xtxt—o)) lcica=Alan?]

- (Ehlers & Schuster, 1999):
Solve eigenvalue problem for each frequency bin.
Separation quality depends on the spectral overlap in the data.

DD C(2)
c,)C @) AR = A A@A D)
Problem of and

Possible solutions:

- Murata et al. (1999):
back-projection, cross-correlation

- Parra (2000): Sinc filtering

- Annemueller (2001)




Demonstration

-Live BSS demonstration at NSF workshop
-Stereo recording of Al Bregman and Te-Won Lee speaking simultaneously
-Data is 10 seconds long, 16kHz sampling frequency




Issues in Multi Channel Speech Separation

Sources localization

— Directivity information

— Singular mixing conditions

Mismatch between sensor and source number
Tracking non-stationary sources

— Adaptation time versus convergence time
— Source identification

Incorporation of speech models
— HMM trained models
— Speech cues, frequency grouping

New approaches for solving those issues tackled by several groups:
Makino, Sawada, Rosca, Ziehe



Single Microphone Source Separation

* Rowelis, 2000, 2003

— Sparse speech code for spectrogram mixtures
— Refiltering (masking) approach

e Jang & Lee, 2002

— Learning basis functions resulting in sparse speech codes
— Soft masking approach

e Pearlmutter et al., 2004

— Learning highly overcomplete feature set, separation by
sparse decomposition



Rowels, 2000, 2003

Masking (Refiltering) Paradigm

Non-constant reweighting of original multiband signals b;(?).

mask 1 1S mask K

~ = /—’\ —N—
ai(t) bi(t) vo(t) bo(t) +...+ agl(t) bi(t)
est. source band 1 band 2

«;(t) are gain knobs on each subband which we can twist over
time to bring bands in and out of the recovered source as needed.

Works extremely well if the masking signals are chosen well.



Jang & Lee, 2002

Proposed Method

sparse decomp.©
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Pearlmutter et al., 2004

Cartoon of Algorithm
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Shapes represent acoustic features and
colours/tilts represent HRTF filtering. Separation
accomplished by sparse decomposition using
basis of HRTFs x source dictionary.




Solve binaural acoustic source separation for
underdetermined case and make use of learned features

2 microphones  Acoustic mixing Overcomplete  Sparse representation



