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Outline of talk

 Goals: Review and discuss some major issues in signal
representation for robust recognition and signal separation

 Current issues in basic peripheral auditory representation

 Classical problems in robust speech recognition

 Generations of solutions to representation and separation
problems
– “Classical” solutions

– “Transitional” solutions

– Solutions based on auditory scene analysis
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What speech recognizers most frequently see:
Mel frequency cepstal coefficients (MFCCs)

 Apply Hamming windows to segment waveform into frames

 Compute frequency response for each frame using DFTs

 Multiply magnitude of frequency response by triangular
weighting functions to produce 25-40 channels

 Compute log of weighted magnitudes for each channel

 Take inverse discrete cosine transform (DCT) of weighted
magnitudes for each channel, producing ~14 cepstral
coefficients for each frame

 Calculate additional coefficients representing first- and
second-order changes over time
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Broadband spectrogram of speech
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Cepstral representation
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Comparing representations …

       ORIGINAL SPEECH                    CEPSTRAL REP
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Comments on the MFCC representation

 It’s very “blurry” compared to a wideband spectrogram!

 Aspects of auditory processing represented:
–  Frequency selectivity and spectral bandwidth (but using a constant

analysis window duration!)

» Wavelet schemes exploit time-frequency resolution better

– Nonlinear amplitude response (via log transformation only)

 Aspects of auditory processing NOT represented:
– Detailed timing structure

– Lateral suppression

– Enhancement of temporal contrast

– Other auditory nonlinearities
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Speech representation using mean rate

 Representation of vowels by Young and Sachs using mean rate:

 Mean rate representation does not preserve spectral information
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Speech representation using average localized
synchrony measure

 Representation of vowels by Young and Sachs using ALSR:
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The importance of timing information

 Re-analysis of Young-Sachs data by Searle:

 Temporal processing captures dominant formants in a
spectral region
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Paths to the realization of temporal fine
structure in speech

 Correlograms (Slaney and Lyon)

 Computations based on interval processing
– Seneff’s Generalized Synchrony Detector (GSD) model

– Ghitza’s Ensemble Interval Histogram (EIH) model

– D.C. Kim’s Zero Crossing Peak Analysis (ZCPA) model
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The original correlogram representation
(Slaney and Lyon)

 “Standard” peripheral auditory processing
– Bandpass filtering

– Nonlinear rectification and compression

– Other stuff

 Autocorrelation of outputs of peripheral auditory model

 Analysis of 2-dimensional graph of autocorrelation vs CF, as it
evolves over time
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Modern timing-based representations

 D. C. Kim’s model:
– Bandpass filter

– Extract zero crossings

– Add frequency components in local regions based on inverses of times
between zero crossings



Carnegie
Mellon        Slide 14 CMU Robust Speech Group

Another speech waveform
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Vowels processed using energy only
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Vowel sounds using autocorrelation expansion
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Comments on peripheral timing information

 Use of timing enables us to develop a rich display of
frequencies, even with a limited number of analysis channels

 Nevertheless, this really gives us no new information unless
the nonlinearities do something “interesting”

 Processing based on timing information (zero crossings, etc.)
are likely to give us a more radically different display of info
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 Speech in high noise (Navy F-18 flight line)

 Speech in background speech

 Speech in background music

 Speech in reverberant environments

 Conventional signal processing provides only limited benefit
for these problems

Some of the hardest problems in speech
recognition today ….
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Speech recognition accuracy degrades in noise

CMN (baseline)

Complete
retraining
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Recognition accuracy also degrades in highly
reverberant rooms

 Comparison of single channel and delay-and-sum
beamforming (WSJ data passed through measured impulse
responses):

Single channel

Delay and sum
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 Compensation achieved by estimating parameters of noise
and filter and applying inverse operations

“Clean” speech
x[m]

h[m]

n[m]

z[m]

Linear filtering

Degraded speech

Additive noise

“Classical” solutions to robust speech
recognition based on a model of the environment
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“Classical” compensation improves accuracy in
stationary environments

 Threshold shifts by ~7 dB

 Accuracy still poor for low SNRs
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But model-based compensation does not
improve accuracy (much) in transient noise

 Possible reasons: nonstationarity of background music and
its speechlike nature
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Sensor 1

Sensor 2

Sensor K

z-n1

z-n2

z-nK

Output

“Traditional” processing with multiple
microphones: delay-and-sum beamforming

 Simple processing based on equalizing delays to sensors

 High directivity can be achieved with many sensors
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 Multi-microphone compensation based on optimizing speech
features rather than signal distortion (Seltzer ‘03)

Array 
Proc ASRFront 

End

Multi-microphone compensation for speech
recognition based on cepstral distortion

Delay
and Sum

Optimal
Comp

Speech
in Room
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Sample results using optimal array processing

 WER vs. SNR for WSJ with artificially-added white noise:

 Comment: Don’t trust results with artificially added noise!
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“Transitional” signal processing schemes:
Multiband recognition and missing features

 Multiband recognition (e.g. Bourlard, Morgan, Hermansky  et
al.):
– Decompose speech into several adjacent frequency bands

– Train separate recognizers to process each band

– Recombine information (somehow and somewhere)

 Missing-feature recognition (e.g. Cooke, Green, Raj et al.)
– Determine which cells of a spectrogram-like display are unreliable (or

“missing”)

– Ignore missing features or make best guess about their values based
on data that are present
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Combination of information streams:
Independent recognition
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Combination of information streams:
Feature combination
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Combination of information streams:
State/decoder combination
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Combination of information streams:
Output combination
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 Example of missing-feature analysis:
an original speech spectrogram
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Spectrogram corrupted by noise at SNR 15 dB

 Some regions are affected far more than others
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Ignoring regions in the spectrogram that are
corrupted by noise

 All regions with SNR less than 0 dB deemed missing (dark blue)
 Recognition performed based on colored regions alone
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Recognition accuracy using compensated
cepstra, speech corrupted by white noise (Raj)

 Caveat: These results were obtained using perfect knowledge
of missing feature “mask”

 Big improvements in SNR are possible
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Recognition Accuracy vs. SNR
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Carnegie
Mellon        Slide 38 CMU Robust Speech Group

Recognition Accuracy vs. SNR
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So what constitutes “modern” processing?

 Signal separation and robust recognition based on auditory
scene analysis

 Signal separation and robust recognition based on better
physiological and perceptual models
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Using auditory streaming cues to separate
sound sources

 Many groups are now working to extract cues identified by Al
Bregman and his colleagues to separate and group auditory
fragments that are believed to arise from different sources

 Most commonly-discussed cues:
– Fundamental frequency/harmonicity

– Source location/interaural time delay (ITD)/interaural correlation

 Other cues that have been studied:
– Frequency and amplitude modulation

– Common onset and offset

 Comment: Results so far are just the tip of the iceberg
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One pitch-based approach: synchronized
heterodyne analysis

 Extract instantaneous pitch, extract amplitudes at harmonics,
resynthesize

 Original speech samples:
 Reconstructed speech:
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Separating speech signals by heterodyne
analysis

 Combined speech signals:

 Speech separated by heterodyne filters:

 Comment:  men mask women more because upper male
harmonics are more likely to impinge on lower female
harmonics
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Speech recognition in noise based on pitch
tracking

 Initial results could improve as techniques mature

Baseline

SHA w
Oracle pitch

SHASHA
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Speech separation by source location

 Sources arriving from different azimuths produce interaural
time delays (ITDs) and interaural intensity differences (IIDs) as
they arrive at the two ears

 So far this information has been used for
– Better “masks” for missing feature recognition and to combat

reverberation (e.g. Brown, Wang et al.)

–  Direct separation from interaural representation
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The classical model of binaural processing
(Colburn and Durlach 1978)
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Jeffress’s model of ITD extraction (1948)

Comment: Several alternates have been proposed recently for
correlation-based mechanism 
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Response to a 500-Hz tone with –1.5-ms ITD
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Response to 500-Hz noise with –1.5-ms ITD
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An early application of binaural correlation-
based processing to ASR (Sullivan/Stern ‘93):
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The good news: vowel representations
improved by correlation processing

 Reconstructed features of vowel /a/

 Recognition results in 1993 showed some (small)
improvement in WER at great computational cost

Two inputs
zero delay

Two inputs
120-ms delay

Eight inputs
120-ms delay
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So what do things sound like on the cross-
correlation display?

 Signals combined with ITDs of 0 and .5 ms

 Individual speech signals:

 Combined speech signals:

 Signals “separated” by correlation display:

 Signals separated by additional correlations across frequency
at a common ITD (for “straightness” weighting):
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Reverberation remains a difficult problem

 Many modeling efforts are motivated by a desire to account
for  the precedence effect (e.g. Lindemann and others)

 Currently not known whether the precedence effect requires
inhibition at the level of the cross-correlation mechanism, or
whether it can be accounted for by peripheral auditory-nerve
patterns

 Conventional (non-auditory) processing has had some
success, but at high computational cost

 Wang and others have used correlation-based processing to
isolate spectro-temporal regions that are least likely to be
corrupted by reverberation
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Signal separation using micro-modulation

 Micromodulation of amplitude and frequency may be helpful in
separating unvoiced segments of sound sources

  Physical cues supported by many psychoacoustical studies
in recent years
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John Chowning’s demonstration of effects of
micro-modulation in frequency
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Separating by frequency modulation only

 Extract instantaneous frequencies of filterbank outputs

 Cross-correlate frequencies across channels (finds co-modulated
harmonics)

 Cluster correlated harmonics and resynthesize

 Our first example:
– Isolated speech:

– Combined speech:

– Speech separated by frequency modulation:

 Comment: Success will depend on ability to “track” frequency
components across analysis bands
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So why haven’t auditory-based
representations been more successful to date?

 Computational complexity (at least historically)

 Ignoring other information besides classical  spectral cues

 Mismatches between extracted features and speech
recognition systems
– Non-Gaussian probability densities

– Frame-by-frame temporal analysis

 A marriage between creative system design and creative
signal processing is needed
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Summary and observations

 Greater computational resources enable us to extract more robust
representations based on ongoing timing information

 Computational auditory approaches have the potential of providing
help in ameliorating some of the most difficult speech recognition
problems:

– Low SNRs

– Speech masked by speech and music

– Reverberant environments

 But we still need to:
– Detect F0 reliably, especially in the presence of competing sources

– Detect modulations of amplitude and frequency in narrowband channels reliably

– Track, identify, and disjoint pieces  that represent a common source




