

Introduction

We propose a model that focuses on local deformations of adjacent bins in a time-frequency surface to explain an observed sound, using explicit representation only for those bins that cannot be predicted from their context. The idea is to capture the self-similarity and dynamics of an unoccludded speech signal, such that those characteristics could later be exploited to separate occluded regions, when overlaps with other sources are encountered.

The transformation model.

A patch of N1 frequency bins, center at the kth band from frame t is generated from a "transformation" of a N₂ frequency bins patch center at the kth from frame t-1.

 $p(X_{t}^{[k-n1,k+n1]}|X_{t}^{[k-n2,k+n2]},T_{t}^{k}) = N(X_{t}^{[k-n1,k+n1]};T_{t}^{k}X_{t}^{[k-n2,k+n2]},\Phi^{[k-n1,k+n1]})$

Missing Data.

Deformable Spectrograms Manuel Reyes, Dan Ellis & Nebojsa Jojic; Columbia University, Microsoft Research

Summary: Our model focuses on local deformations of adjacent bins in a time-frequency surface to explain an observed sound, using explicit representation only for those bins that cannot be predicted from their context.

Speech Production Model

Separation Example

Missing Data.

Formants and Harmonics Tracking

Robustness to noise.

$$N(X_{t}^{k}; H_{t}^{k} + F_{t}^{k}, \Delta) C_{t} = 0;$$

 $b_{t} = j, C_{t}) = N(X_{t}^{k}; u_{j}^{k}, \Sigma_{j}) C_{t} = 1;$

- Propagate Labels Using Learned Transformation Maps.

- Learned Speaker Models from Patches and Dissambiguate.