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The goal of Independent Component Analysis (ICA) is to 
factorize an observation matrix X into a basis vectors S and 
coefficients A such that the columns of S are statistically 
independent:

Blind Source Separation and ICA
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samples 

se
ns

or
s 

Components  

se
ns

or
s 

samples  

co
m

po
ne

nt
s 

The notion is that the observations x(t) have been generated by 
linear mixing  A of independent sources s(t), and the recovered 
component are the originating sources. 



3

Lucas C Parra

Statistical independence implies for all i≠ j,t,l,n,m:

For M sources and N sensors each tuple {t,l,n,m} this equation 
gives M(M-1)/2 conditions for the NM unknowns in A.

Sufficient conditions if we use multiple:

use sources assumed* condition statistic algorithm
t non-stationary Rx(t) = A Rs(t) A

T covariance decorrelation
l non-white Rx(l) = A Rs(l) A

T cross-correlation SOBI

n, m non-Gaussian Cx(i,j)= ACs(i,j)A
T 4th cumulants JADE (ICA)

           * zero mean 

E[si
n(t) sj

m(t +l )] = E[si
n(t)]E[sj

m(t +l )]

Separation Based on Independence
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'Quickie BSS' – GEV of two Cross-Statistics

This can be combined to a standard generalized Eigenvalue equation

Rx
-1Cx W = W D

>> [W,D] = eig(X*X',C);
>> S = W' * X;

The independence assumption establishes that there are some cross-
statistics of the observations say R

1
, Q

2
 that are diagonalized by W=A-1:

Rs = W Rx W
T = diag

Cs = W Cx W
T = diag
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Interestingly, diagonalization 
algorithms based on these 
three different properties of 
the signals give often similar 
results in EEG:

• non-white
• Non-Gaussian
• non-stationary

This supports the 
interpretation of EEG as 
linear superposition of 
independent signals. 

EEG sensor projections A=W-1

Trial averaged components s(t) = W x(t)

Example: ICA in Electro-Encephalography
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Source s
i
(t) is coupled to microphone x

j
(t) by the room response A

ji
(l).

The goal of acoustic source separation is to find filters W
ij
(l) that 

generate model sources y
i
(t), corresponding to the sources s

i
(t)

Acoustic environments are characterized by multi-path 
propagation which can be represented as a convolutive mixture:

y t =∑
l

W l  x t−l 

x t =∑
l

Al  s t−l 

Acoustic Mixing and Separation
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x t =A t ∗s t  ⇔ x =A s 

Source separation aims to find filters W(ω) such that model 
source y(ω) correspond to the original sources  s(ω).

y =W  A  s 

For efficiency reasons this problem is often transformed into 
the frequency domain:

Frequency Domain Separation 
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R yy t ,=W R xx t ,W H 

argmin
W 
∑

t
∥offdiag R yy t ,∥2

For non-stationary signals this can be achieved by minimizing 
cross-powers R

yy
(t,ω)=E[y(ω)yH(ω) | t ] estimated over multiple 

estimation periods:

Separation based on Non-Stationarity
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mic. array 

Interference
User

mic 1

mic 2

source 1

source 2

Separation for Speech Controlled TV
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W  A=P D 

Independence criteria specifies result up to permutation P(ω) 
and scaling D(ω)  

• Convolution: Scaling D(ω) corresponds to convolution of each 
source.

• Permutation: P(ω) may be different for every frequency bin!

• Subspace: N≤M dimensional space of equivalent solutions W(ω).

Ambiguities of the Separation Criteria
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Convolutive BSS Summary 

State-of-the-art (?): Frequency domain SOS achieving 15dB-
20dB interference reduction for mixtures of up to 3 sources.

Second order statistics (SOS) sufficient for non-stationary signals 
such as speech.

SOS algorithms easier to implement.

Frequency domain formulations give fast algorithms.

However SOS in the frequency domain leads to frequency 
permutation ambiguity.

Criteria that have been proposed to fix this problem are:
● Limit support in time domain (smooth spectrum)
● Exploit frequency co-modulation
● Impose geometric constraints
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r  ,=W d  ,

d i  ,=exp j
2

f

pi

c
sin 

In order to interpret the resulting filter geometrically consider the 
farfield array response r(Θ,ω) for filters W(ω):

Array vector for microphones at positions p
i
 : 

Farfield Beam Response

p
i

Θ
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Two users at 2.5 m distance 
from array and 2 mics with 30 
cm aperture.  

Notice nulls consistent across 
frequency bands at user 
positions 0o and -45o. 

Same signal and user 
positions with 70cm aperture.

Notice "permutation" in lower 
frequency band.

Numerical kurtosis measured 
on 15s of data is higher than 
above.

Example Beam Patterns - 2 Microphones
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To avoid trivial solution, W(ω)=0, normalization is required, e.g.

W e i=1

In MSC and often in BSS we keep gain of one microphone constant:

In linearly constraint minimum variance (LCMV) or generalized 
sidelobe canceling  (GSC) keep one orientation constant:

W d  ,=1

Or in some robust adaptive beam-forming the angle response
is constraint to change slowly with direction: 

W ∂d  ,=0

Beamforming: Geometry as Linear Constraints
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R yy =W R xx W
H 

argmin
W 

diag R yy 

argmin
W 

∥offdiag R yy
t ∥2

Power vs. Cross-Power minimization

Second order separation and adaptive beamforming have similar 
criteria:

Beam power and cross-power is given by 

Adaptive beam forming minimizes power -does not allow crosstalk

Decorrelation algorithms minimizes cross-power - allows crosstalk
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Source Separation based on second order non-stationarity

Minimum Cross-Power over time: 
                                                                             

"Geometrically initialized Source Separation":

Delay-sum initialization 

"Geometrically constraint Source Separation":

Unit-gain constrained in Θ  

argmin
W 
∑

t
∥offdiag [R yy

t ]∥2

W d  ,=1

Combination of BSS with Beamforming

W init =d
H  ,
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Cross-power minimization across time can be made robust by 
initializing the filter structure with delay-sum beams, i.e. for each 
channel a maxima in the orientation of one of the sources.

                8 microphones                                                       4 microphones

BSS with Geometric Initialization
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Cross-power minimization across time with 'soft' constraints on 
the response for given angles. Here we used constant unit-gain 
for user locations, and zero-gain for interference locations.

                8 microphones                                                         4 microphones

BSS with 'soft' Geometric Constraints
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Performance Comparison 3 Sources
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Real room performance comparison
... 2 sources for variable locations and number of microphones ...
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Second order non-stationary

Second order non-white

4  th order non-Gaussian
Assuming independence one can show that for any k,l, i≠j

Hence for any i≠j  

or in matrix notation

after some algebra

ci , j M =∑kl
Cum si , s j , sk , sl mkl=0

C x  I =AC s A
T A AT

C s M =diag

Cum si , s j , sk , sl =E [si s j sk sl ]−E [si s j ]E [sk sl ]
−E [si sk ]E [s j sl ]−E [si s j ]E [s j sk ]=0

R x t =E [ x t  xT t ]=A E [s t  sT t ] AT=A R s t  A
T

Separation Based on Independence

R x l =E [ x tl  xT t ]=A E [ s tl  sT t ] AT=A R s l  A
T
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Source Subspace
... extract signal from noise from additional microphones ...

N❐M dimensional space of equivalent solutions for W(❐) 
because there are more observations than signals. Signal exists 
in a M dimensional subspace.

Recover source subspace with  PCA for each ❐

Problem: 
• Orthogonality within source subspace may be meaningless in  

terms of beam geometry. 
• Sources of interest may have small powers.


