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We present a biologically-inspired model of dynamic recognition and learning
of auditory objects in the auditory cortex, based on unsupervised learning and
the statistical theory of Kalman prediction.

This sound organization scheme uses an underlying model of cortical process-
ing, where neural receptive fields (STRFs) are modelled by a two-dimensional
multi-resolution filter-bank.

Motivation & Framework

This cortical representation sets the framework for unsupervised organization
of sound elements into perceptual streams, using predictions of an internal
representation of the environment.
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Primitive cues:
* Pitch extraction (based on harmonic templates)
* Onset/Offset (common start and end of events)
* Spatial location (possibly ...)

Dynamic Learning:
* Multi-resolution cortical representation
* Unsupervised learning
* Kalman filtering

Multi-scale Representation:
* Timbre cues
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J = max P(model | Input)

Optimization function:

maximizing the model representation of the streams given the input data

Learning clusters which maximize a temporal continuity constraint at the
output of cortical dynamic filters.

Z(t): model internal representation

I(t): Input data of primitive cues
(in multi-scale representation)

Y(t): Output through cortical filters
Let

A,B: Cortical filter parameters

Maximizing J

Kalman filter formulation
Z(t) = A. I(t) + N
Z(t) = B. Z(t-1) + C. Y(t) + N

Learning function
(following Kalman theory) Z(t+1) = Z*(t) + G(t) (I(t) - A.Z*(t))

Competitive learning step min (I(t) - A.Z*(t))

i.e D J/ D Z = 0Minimizing -log P(I | Z) - log P(Z)

Learning Algorithm
1 2 K

. . .

t
Auditory scene

Internal model

Adaptive
unsupervised learning



Center for Auditory
and Acoustic Research

I nstitute for Systems Research
University of Maryland

Time (sec)

Fr
eq

ue
nc

y
(K

H
z)

1.5

2

.5

.75

Fr
eq

ue
nc

y
(K

H
z)

-2Hz

-16Hz

4Hz

8Hz

-2Hz

-16Hz

4Hz

8Hz

2

.5

2

.5

.5 2

2

.5

Scale (c/o)

t=80ms

Auditory Scene Multi-scale
Representation

Auditory
streams

Dynamic
Learning

Alternating Tone Sequence

* The output of the cortical filters represent the auditory
streams perceived from the acoustic scene.

* The tuning of certain cortical filters to the presentation
rate of the tone sequence is important in explaining how the
two streams are perceived as continuous (note: 4Hz filters).

* The dynamics of streaming is influenced by the low-pass
nature of cortical responses, which is a manifestation of the
loss of cortical phase-locking and synaptic depression.
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Alternating Ripple Sequence

* We present a sequence of alternating static ripples
(broadband sounds with spectral modulations 2 and 0.5
cycles/octave). At each cycle, a new instance of the noise
carrier is used.

* The multiscale representation separates the two sound
patterns along a ‘spectral-modulation’ dimension (Scale
(cycles/octave)); which helps the adaptive learning module
to segregate the two ripple patterns into separate streams.
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Paradigm

Alternating Tone Cycle

* This simulation is a direct test of the principle of
sequential integration. The tones in the low frequen-
cy region fall in the same cluster, because the acous-
tic features from patterns L1, L2, L3 appear to be
similar (by virtue of frequency proximity), and disso-
ciated from the other “competing” patterns H1, H2,
H3. This perception is only maintained as long as the
sequences are repeated at a relatively fast rate, guar-
anteeing that the dynamics of the cortical model are
commensurate with the presentation rate.
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Alternating Vowels

* The signals in this simulation are natural vowels
/e/ and / / from a same male speaker.

* Even though they are produced at the same pitch
(same speaker), the two vowels exhibit very distinct
spectral shapes (different formant positions and rela-
tive intensities). The divergence between the two
patterns promote streaming effects, hence contribut-
ing to their segregation into two separate streams.
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Capturing Interference Tones

* By presenting a repeated tone sequence (C-C-C
preceding A-B in the paradigm panel), we can cap-
ture the effect of interfering tones X, hence segregat-
ing the sequence of interest (AB) from its surround-
ing interference.
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Crossing Trajectories

* The theory of crossing trajectories tests the stream-
ing ability of a rising vs. falling tone sequence.

* In the case of pure tones, the streamed sounds
exhibit a ‘bouncing’ effect, where the system fails to
follow the rising and falling trajectories as they cross
each other. This effect is illustrated in the output of
the learning model.
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Crossing Trajectories (cont’d)

* When the rising sequence is replaced by a
harmonic complex, the separation between the
falling and rising patterns is now possible using
cues of spectral shape and harmonicity. The
falling pattern is now separated as an distinct
stream.
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Sinewave Speech

* Sinewave speech is constructed by sinusoidal waves
tracking the formant trajectories of speech. It initially
sounds like a collection of tones and beeps.

*We hypothesize that each sinewave is clustered into a
separate stream, hence making it difficult for the audito-
ry system to integrate information across perceptual
objects to be able to recognize the linguistic meaning of
the sentence.

These outputs illustrate the real-part of
the complex-valued cortical response to
better illustrate the fast changing sinu-
soidal patterns.
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Sinewave Speech (cont’d)
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* Interestingly, sinewave speech sounds more intelligible
when segments of silence are interleaved with the origi-
nal signal. The silence portions introduce ‘common-
onset’ cues giving evidence that the three sinusoidal
waves should be integrated together in the same percep-
tual stream.
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Tone in a Mixture

* When alternating a tone ‘A’ with a complex ‘BC’,
the occurrence of tones B and C together delivers a
strong onset cue, hinting that these two elements
should be grouped together, separately from stream
‘A’.
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Tone in a Mixture (cont’d)

* When the frequency of tone ‘A’ is equal to that of
tone ‘B’, the organization of the streams now fol-
lows Bregman’s old-plus-new heuristic where new
patterns are separated into ‘old’ sound elements
(sound ‘B’ is a continuation of an old pattern ‘A’),
plus a new element ‘C’ which segregates into a sep-
arate stream.
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Speech Segregation
(with original utterances)

* A pair of sentences (1-3 sec) from two speakers are analyzed and mapped into a multi-scale representa-
tion. The features extracted from both speaker are then combined in an array of sound patterns, with no
reference to which speaker they belong to. They are then clustered using the adaptive learning model.
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- 50 best speaker pairs -

* Segregation results are quantified by a correlation coefficient between the learned (A’) and original sen-
tence (A). The baseline correlation is computed between the original sentences (A and B), while the confu-
sion correlation relates the learned sentence (A’) to the utterance from the other speaker (B).
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Speech Segregation
(from mixture)

* Sound mixtures are analyzed using a set of pitch and onset cues extracted from the mixture spectrogram,
and mapped onto a multi-scale representation.
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* While not as high as the values obtained with the original sentences, the correlation coefficients in this test
indicate a relatively successful performance of the adaptive learning model in segregating concurrent speakers.
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Conclusions

* We develop and test a cortical model for sound organization based on adaptive
learning and Kalman estimation. The model is founded on perceptual principles of
auditory grouping and stream formation. Such principles are translated into a compu-
tational scheme that combines aspects of bottom-up sound processing with an inter-
nal representation of the world, which adapts its intrinsic representation based on the
residual error between its own predictions and the actual sensory input.

* The model is extremely valuable in exploring various aspects of sound organiza-
tion in the brain, allowing us to gain interesting insight into the neural basis of
auditory scene analysis.
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