

What Kinds of Knowledge about Humans Are Useful for Designing Machine Systems?

- Automatic recognition of speech effect (signal) $=$ action
- Human auditory perception effect (signal) = action
- Knowledge of human auditory perception !

Linear Discriminant Analysis (LDA)

Knowledge from Data

Optimal distribution of signal energy in a
noisy channel
Shannon 1949

Optimizing spectral basis for speaker-independent ASR Malayath and Hermansky, Speech Communication 2003

Non-uniform frequency sensitivity of hearing (and other implications)

- Fletcher 1930 (simultaneous masking)
- Critical bands of hearing (increasing with frequency)
- What happens outside the critical band does not affect detection of events within the band!
- Recognition of nonsense CVC syllables [Fletcher/Allen]
- final error in human phoneme recognition is given by product of errors in (articulatory) sub-bands

Independent processing of parts of signal spectrum?

Poor man's scene analysis ?	
- Subdivide stimulus into a number of information sub-streams - ears, eyes, nose, fingers, mouth - further sub-division within each sense (e.g. frequency selectivity, Sensitivity to rate-0f-change,...)	- Select sub-streams with most favorable SNRs, alleviate the rest - Get the information (likelihoods of events?) from the selected information sub-streams

How to use estimates of posterior probabilities in current HMM systems?
(TANDEM technique)
Hermansky, Ellis and Sharma, ICASSP-2000

Some results

- about the same (likely somehow better) performance as conventional features in ASR
- performs well in combination with conventional system
- about 8\% relative error improvement in DARPA EARS program
- part of the most accurate system in AURORA European Telecommunication Standards Institute initiative (more than 50% relative error improvement on noisy data)

Conclusions

- data-guided processing (trained on dev data) can be consistent with properties of hearing
- features as a function of posterior probabilities of classes
- longer time spans ($300-1000 \mathrm{~ms}$) in feature extraction
- hierarchical processing
- frequency-localized features first
- information fusion of frequency-localized features

