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Learning about hearing 
from speech data

Hynek Hermansky

IDIAP Research Institute
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What Kinds of Knowledge about 
Humans Are Useful for Designing

Machine Systems?

• Automatic recognition of speech
effect (signal) = action

• Human auditory perception
effect (signal) = action

• Knowledge of human auditory perception !

Where to get the knowledge from?

• By studying biological systems
– which properties are relevant ?

• From speech data 
– optimized machine processing could (and should) 

be consistent with relevant properties of human 
hearing
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LDA gives basis for projection 
of spectral space
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Optimizing spectral basis for speaker-independent ASR
Malayath and Hermansky, Speech Communication 2003

Critical-band filterbankLDA-derived basis
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Non-uniform frequency sensitivity of hearing

(and other implications)

• Fletcher 1930 (simultaneous masking)
– Critical bands of hearing (increasing with frequency)

• What happens outside the critical band does not affect 
detection of events within the band !

• Recognition of nonsense CVC syllables [Fletcher/Allen]
– final error in human phoneme recognition is given by 

product of errors in (articulatory) sub-bands

Independent processing of parts of signal spectrum?

Poor man’s scene analysis ?

• Subdivide stimulus into a number 
of information sub-streams

– ears, eyes, nose, fingers, mouth

– further sub-division within each sense 
(e.g. frequency selectivity, sensitivity 
to rate-of-change,…)

• Select sub-streams with 
most favorable SNRs, 
alleviate the rest

• Get the information 
(likelihoods of events?) 
from the selected 
information sub-streams

Multi-band recognition of speech
– Hermansky, Tibrewala, and Pavel, ICSLP96
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Efficient in recognition of partially corrupted speech

Goodbye to spectral shape
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frequency

Probabilities of high energy
as a function of frequency

(related to short-term spectrum)
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Putting it all together

• frequency-localized to 1-4 Bark
– cortical spectro-temporal patterns (e.g. Shamma and colleagues,…)
– because it works (multi-band ASR, optimization studies)

• rather long temporal spans 0.4-1 s
– cortical spectro-temporal patterns (e.g. Shamma and colleagues,…)

– because that is where the information is (coarticulation, mutual info studies, …)
– because it works (features for cellular industry, DARPA,…)
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How to use estimates of posterior probabilities in 
current HMM systems?

(TANDEM technique)

Hermansky, Ellis and Sharma, ICASSP-2000

Some results

• about the same (likely somehow better) performance as 
conventional features in ASR

• performs well in combination with conventional system 
– about 8% relative error improvement in DARPA EARS 

program
– part of the most accurate system in AURORA European 

Telecommunication Standards Institute initiative (more than 
50 % relative error improvement on noisy data)

Conclusions

• data-guided processing (trained on dev data) 
can be consistent with properties of hearing

– features as a function of posterior probabilities of 
classes 

– longer time spans (300-1000 ms) in feature 
extraction

– hierarchical processing 
• frequency-localized features first
• information fusion of frequency-localized features


