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What Kinds of Knowledge about
Humans Are Useful for Designing
Machine Systems?

+ Automatic recognition of speech

effect (signal) = action
+ Human auditory perception

effect (signal) = action

+ Knowledge of human auditory perception !

Where to get the knowledge from?

+ By studying biological systems
- which properties are relevant ?
+ From speech data

- optimized machine processing could (and should)
be consistent with relevant properties of human
hearing

Knowledge from Data
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Linear Discriminant Analysis (LDA)

LDA gives FIR filters for
processing time trajectories of
spectral energies

LDA gives basis for projection
of spectral space
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Optimizing spectral basis for speaker-independent ASR

Malayath and Hermansky, Speech Communication 2003

LDA-derived basis

in frequency
?

sensitivity to change

Critical-band filterbank

Non-uniform frequency sensitivity of hearing
(and other implications)

+ Fletcher 1930 (simultaneous masking)
— Critical bands of hearing (increasing with frequency)

+ What happens outside the critical band does not affect
detection of events within the band !

+ Recognition of nonsense CVC syllables [Fletcher/Allen]

— final error in human phoneme recognition is given by
product of errors in (articulatory) sub-bands

Independent processing of parts of signal spectrum?

Poor man'’s scene analysis ?

+ Subdivide stimulus into a number
of information sub-streams
- ears, eyes, nose, fingers, mouth
—further sub-division within each sense
(e.g. frequency selectivity, sensitivity
to rate-of-change,...)

«  Select sub-streams with
most favorable SNRs,
alleviate the rest

+ Get the information
(likelihoods of events?)
from the selected
information sub-streams

Multi-band recognition of speech
- Hermansky, Tibrewala, and Pavel, ICSLP96

+ frequency bandl ~» classifierl » {p,}
. . . merging
signal . . . classifier

> {n

> frequency bandn > classifiern * {p}

Efficient in recognition of partially corrupted speech

Goodbye to spectral shape
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Spectral Envelope Matrix of posteriors

Vector of spectral energies Matrix of posterior

derived from short segment probabilities of relevant

of signal sound events, derived from
any relevant evidence
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Probabilities of high energy
as a function of frequency
(related to short-term spectrum)
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Probabilities of more
complex events

Typical (more complex)
spectro-temporal
receptive field

Spectro-temporal receptive field
sensitive to frequency and time localized
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Putting it all together

400-1000 ms
-~ :
class posteriors
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3 o (raine ) = processing 3 some function
g 5 . = (trained NN) 3 ofphoneme
g _w;. processing > posteriors
= (trained NN )
? —> time

frequency-localized to 1-4 Bark
- cortical spectro-temporal patterns (e.g. Shamma and colleagues,...)
— because it works (multi-band ASR, optimization studies)
rather long temporal spans 0.4-1 s
- cortical spectro-temporal patterns (e.g. Shamma and colleagues,...)
- because that is where the information is (coarticulation, mutual info studies, ...)
— because it works (features for cellular industry, DARPA,...)

How to use estimates of posterior probabilities in
current HMM systems?

(TANDEM technique)

Hermansky, Ellis and Sharma, ICASSP-2000

Some results

+ about the same (likely somehow better) performance as
conventional features in ASR
« performs well in combination with conventional system
— about 8% relative error improvement in DARPA EARS
program
— part of the most accurate system in AURORA European
Telecommunication Standards Institute initiative (more than
50 % relative error improvement on noisy data)

[> : i [> principal component [>
[> static nonlinearity [> otion 1o 1ok
e o make transformed features
phoneme distributions [> ! [> for HMM
posteriors more Gaussian posteriors
[> [> uncorrelated
Conclusions

+ data-guided processing (trained on dev data)
can be consistent with properties of hearing

- features as a function of posterior probabilities of
classes
— longer time spans (300-1000 ms) in feature
extraction
— hierarchical processing
« frequency-localized features first
« information fusion of frequency-localized features




