
Interfacing with the Machine

Jay Desloge SENS Corporation Sumit Basu Microsoft Research

They (We) Are Better Than We Think!

- Machine source separation, localization, and recognition are not as distant as they may seem.
- There are, in fact, already systems that achieve limited success in these areas.
- These machines provide many opportunities to investigate the interaction of machines with the human operator.

Consider: Hearing Aids

- Directional microphones can yield target-location (in front of wearer) intelligibility-weighted SNR improvements of up to 5-6 dB.
- Adaptive directional capability can yield higher SNR improvements (on the order of 8-12 dB).
- FM capability allows aid to receive signals from remote sources (TVs, remote microphones).

(Phonak Persio)

Consider: Tele/Video Conferencing

- Directional microphones used to identify and extract the sources from the environment. IW SNR improvements 5-6 dB on average.
- Active speaker is determined by microphone input.
- Voice-tracking capability can focus video camera on an active source within the environment. RMS loc. error < 10 deg.

(Polycom Soundpoint)

Consider: ASR State of the Art

	Туре	Characteristics	WER
Meeting Room (16kHz)	Business Spontaneous	Task oriented, but includes true meetings collected in uncontrolled conditions Far-talking, but also have close-talking (head-mounted) for comparison	30% (head- mounted) 50% (distant)
Switchboard (Telephone)	Polite Spontaneous	Close-talking, relatively free of noise These are real people (with a slight bias toward females housewives and higher education), who don't know each other and have some conversation on some topic. Real data, but instrumented Conditions	15%
Broadcast News	"Planned" speech	"Found data" (exists in nature, not artificially collected) Spoken by professional speakers; not read, but speakers know what they are going to say in advance, and possibly Practice	9%
WSJ (Dictation)	Read speech	High-quality microphones, professional speakers, "Wall Street Journal" sentences (ie it's a rich, but restricted domain)	3-8%
String of Digits	Read speech	Easy task; no noise, close-talk	<0.5%

From Patrick Nguyen (MSR)

Consider: Wireless Communication, GPS

- Wireless communication links can connect team members (e.g., military, firefighter, police) and can provide clean, separated signals for each source.
- GPS can provide accurate information about the location of each source.
- Efforts have already been made to present these sources to the team members in a logical manner (e.g., spatialized audio).

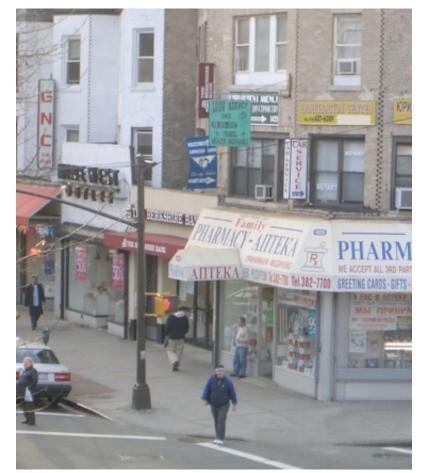
Given that these and other possibilities for humanmachine interaction already exist, it is important to study how the humans and machines can interact in a manner that achieves the best possible performance.

We will discuss:

- Machine enhancement of human capabilities (H+)
- Human enhancement of machine performance (M+)
- Design factors in human-machine interfaces

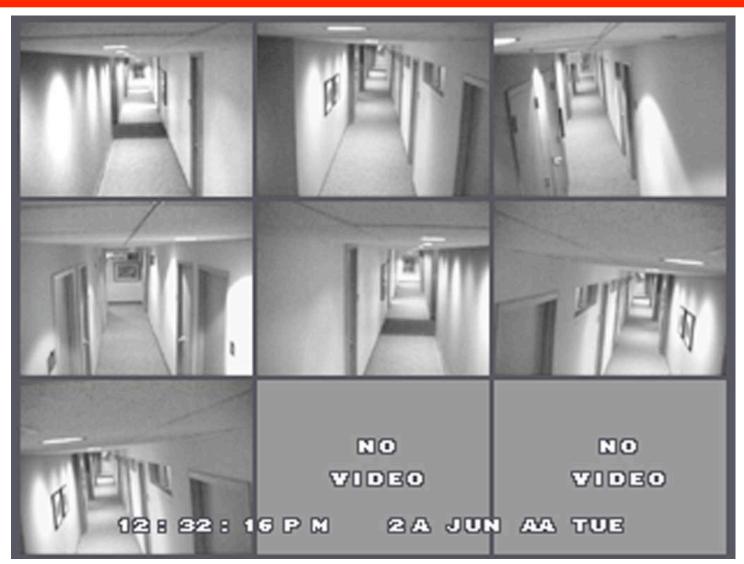
Machines Enhancing Human Capabilities (H+)

• Despite their limitations, machines can outdo what we do

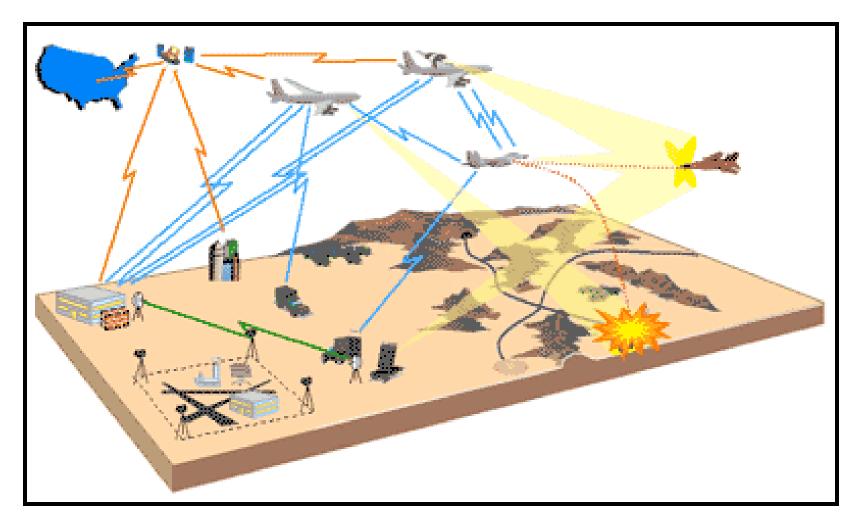


Vs.

H+: Going Beyond the Human Scale


- Very large arrays:
 - Localization for low-frequencies
 - Localization for impulsive/wideband sounds
 - Silverman, Patterson, and Flanagan, "The Huge Microphone Array," IEEE Concurrency, October, 1998.
 - Pregliasco and Martinez, "Gunshot Localization through Recorded Sound," Journal of Forensic Science, 2002.

H+: Augmenting Ears


- The strength of numbers:
 - As a localizer or recognizer, machines may be at about half human performance
 - With 100 sensors => 50 humans worth!!
 - But what good is a fractional human?
- State of the Art in General Sound Recognition
 - Speech detection
 - Everybody and their Uncle Joe, "My Novel Method for Speech Detection," 1960-2004.
 - Everything else

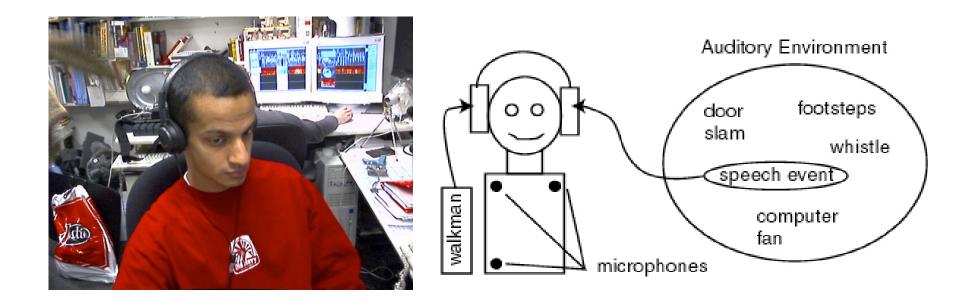
H+: Multiplying Ears

... because there may be too many things to listen to...

H+: Multiplying Ears

...too many sounds in too many places...

H+: Distant Ears


... because we can't be everywhere at once...

H+: Replacing Ears

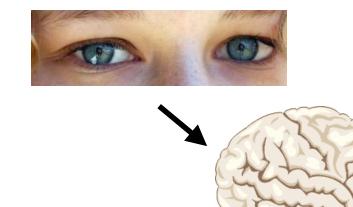
... because we may have limited hearing capabilities...

H+: Augmenting Ears

... because we're not always paying attention...

H+: The Sixth (Seventh, etc.) Sense

- We can apply existing techniques to frequency ranges/senses we don't have
 - Ultrasound
 - Microwave

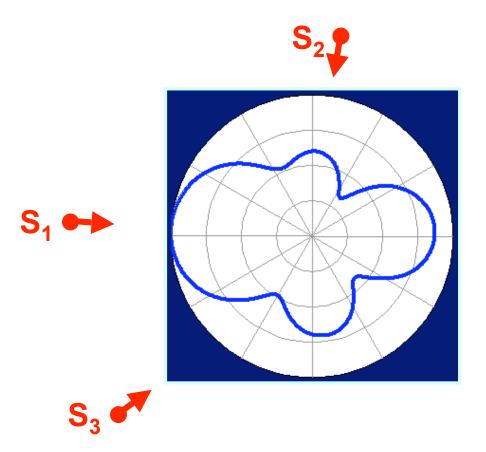


Humans Enhancing Machine Performance (M+)

• Despite impressive machine computational capability, there are still certain tasks that the human can do faster and more reliably.

VS.

M+: What Do We Optimize?


- Finding the right objective function is hard
 - SNR vs. intelligibility
 - Listening comfort
 - Particularly true if a human will be listening to the output
- Example: Hearing Aids

(Phonak Persio)

M+: System focus

• Where are the sources?

M+: Environmental Conditions

- The human is often better at scene analysis
- Can drive system to optimize for varying conditions
 - Low Reverb? High Reverb?
 - Few, localized sources? Many sources?

M+: Calibration

- Some systems (e.g., conventional array processing) require knowledge of physical arrangement of microphones.
- Portable/body-mounted systems in particular must be configured and calibrated for proper operation.

Discussion and Teaser: Designing the Interactive System

- Input from the user:
 - How can we use direct manipulation and implicit manipulation to control the machine's abilities
- Output to the user
 - How do we decide what information is relevant to the user and how much they can handle?
 - How do we consolidate information into concise visuals/auralizations?
 - How can we display multiple auditory/visual streams to the user?