Speech separation: human singlechannel and spatial performance

A.W. Bronkhorst

TNO Human Factors, The Netherlands

Speech separation workshop, Montreal

Human speech separation

Hearing impairment

CP effect

Carhart)

(Cherry,

(Plomp, Pavlovic)

Dip listening (Festen)

Masking (Miller, French & Steinberg)

Room acoustics (Houtgast & Steeneken)

> Binaural unmasking (Licklider, Levitt & In Rabiner) (Ca Attentional resources (Cherry, Broadbent, Treisman)

Contextual information (Boothroyd, Bronkhorst)

> Talker characteristics (Florentine & Buus, Bradlow, van Wijngaarden)

Segregation, streaming (Bregman, Darwin, Brokx & Nooteboom)

Informational masking (Carhart, Kidd, Brungart, Freyman)

Speech separation workshop, Montreal

Outline

How can factors be modeled?

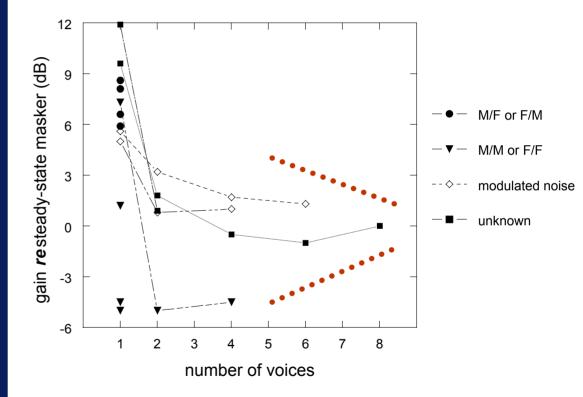
- Prediction of speech intelligibility, often no useful for machine separation
- Single-channel speech separation
 - ► Type of interference
 - Energetic vs. informational masking
 - ► Reverberation, talker characteristics

• Spatial performance

- ► Single source
- ► Multiple sources
- Informational masking
- Conclusion

Single-channel speech separation (1)

Interference is noise

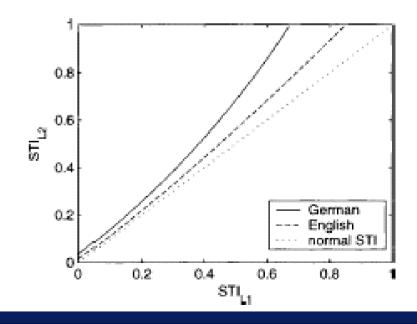

- ► Old line of research, resulted in Articulation index
 - Contribution in frequency band is proportional to SNR
 - Frequency bands can be combined in weighted sum
 - depends on speech material
 - Nonlinear relationship between AI and % correct
 - depends on speech material (e.g. contextual information)

Recent developments

- Prediction for low-bitrate channels (PESQ, Beerends, \$\$\$)
- Improvement of prediction for non-smooth noise spectra
 - Modified STI (Steeneken); Speech Recognition Sensitivity (SRS) model of Müsch & Buus
- Modeling of context effects
 - SRS model, context model of Bronkhorst et al.

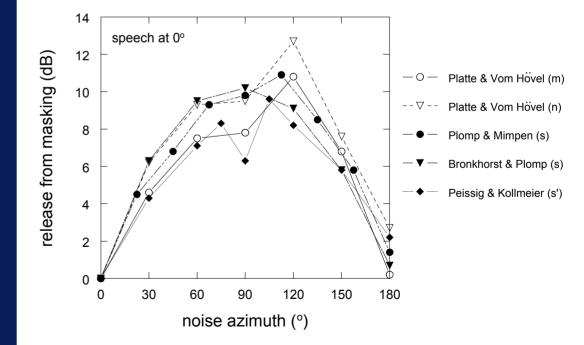
Single-channel speech separation (2)

- Interference is speech(like)
 - Strong effect of type of masker
 - noise/voice
 - same/different
 - sex
 - Interaction with number of maskers



Single-channel speech separation (3)

- Energetic vs. informational masking
 - Energetic masking
 - Occurs during encoding, cannot be resolved by an "ideal" listener
 - Can be modeled using current knowledge of auditory system
 - problem: dip listening / contextual information
 - Informational masking
 - "The rest"
 - stimulus and/or masker uncertainty
 - at different processing levels (phonetic, semantic)
 - Occurs only when target and interferer are similar
 - studies use very specific material
 - Large inter-individual differences, effects of training and a-priori information
 - Shallow psychometric functions
 - Difficult to model

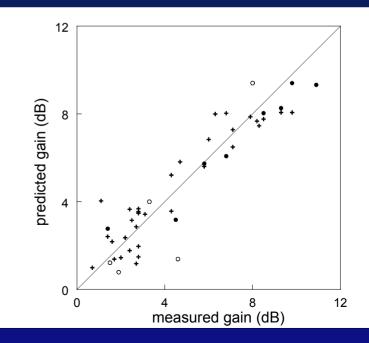

Single-channel speech separation (4)

- Other factors
 - Reverberation
 - Can be adequately modeled by STI
 - treatment of frequency domain similar to AI
 - Modulation Transfer Function (MTF) integrates effects of noise and reverberation
 - ► Talker characteristics
 - Effects are difficult to model
 - Speech perception in noise (SRT) can be used as measure of talker proficiency
 - Can be incorporated in STI (van Wijngaarden et al., 2004)

Spatial performance (1)

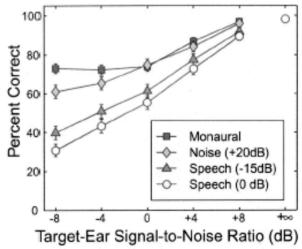
- Single noise source
 - Combination of bestear (ILD) and binaural (ITD) listening
 - Can be modeled quite well (vom Hövel, 1984; Zurek, 1990)
 - Strong effect of acoustic environment

Spatial performance (2)


- Multiple noise sources
 - Binaural gain generally decreases, depending on source configuration
 - Modeling: extended single-source model

• Multiple speech(like) sources

- Same effects as in single-channel case
 - dip listening
 - strong influence of type of interferer
- Indication that binaural release is largest for 2-3 interferers (Hawley et al., 2004)


Simple descriptive model (Bronkhorst, 2000) $\alpha = 1.4; \beta = 8$

$$R = \left[\alpha \left(1 - \frac{1}{N} \sum_{i=0}^{N} \cos \theta_i \right) + \beta \frac{1}{N} \left| \sum_{i=0}^{N} \sin \theta_i \right| \right].$$

Spatial performance (3)

- Informational masking
 - Spatial release from masking
 - Can be much larger than the release for energetic masking (Arbogast et al., 2002)
 - Can occur in conditions where there is no release from energetic masking
 - due to a difference in perceived location (Freyman et al., 1999, 2001, 2004)
 - Limited attentional resources
 - Demonstrated in "classical" shadowing experiments (e.g. Wood & Cowan, 1995)
 - Large effect of contralateral distracter in CRM task (Brungart & Simpson, 2002)
 - Better monaural than binaural performance in speaker recognition task (Drullman & Bronkhorst, 2000)

Conclusion

Good progress

Dip listening (Festen)

Masking (Miller, French & Steinberg)

Room acoustics (Houtgast & Steeneken)

> Binaural unmasking (Licklider, Levitt &

Rabiner)

CP effect (Cherry, Carhart) Difficult Contextual information (Boothroyd, Bronkhorst) Talker characteristics (Florentine & Buus, Bradlow, van Wijngaarden) Segregation, streaming (Bregman, Darwin, Brokx &

Informational masking (Carhart, Kidd, Brungart,

Nooteboom)

Attentional resources Freyman)

Cherry, Broadbent, Treisman)

No problem for machines

Speech separation workshop, Montreal