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Abstract 

The paper argues on examples of selected past 
works that stochastic and knowledge-based 
approaches to automatic speech recognition do not 
contradict each other. Frequency resolution of 
human hearing  decreases with increasing 
frequency. Spectral basis designed for optimal 
discrimination among different phonemes of 
speech have similar property. Further, human 
hearing is most sensitive to modulations with 
frequency around 4 Hz. Filters on feature 
trajectories, designed for optimal discrimination 
among phonemes of speech are bandpass with 
central frequency around  4 Hz. 

1. Introduction 
The speech signal originates in a speaker vocal 

organs, is processed by the human auditory system, 
and has as its purpose communication among 
human beings. This knowledge  can be used to 
advantage in designing speech processing 
techniques. Such techniques are often called  
knowledge-based processing techniques.  

 
Variability of the speech signal due to non-

linguistic sources of information such as 
environmental noise, or anatomical and 
idiosyncratic differences among speakers is not 
well understood and its influence on the signal 
appears almost random. The so-called stochastic 
speech processing techniques that attempt to deal 
with this random component in the signal are 
currently dominating the field. 

 
When it comes to reduction in the information 

rate for speech recognition, both the deterministic 
and stochastic techniques use knowledge. The 
difference is that in the knowledge–based 
techniques the knowledge may come from  
relevant experiments on speech production and 
speech perception while in the stochastic 

techniques the knowledge comes from large 
amounts of training data.  

 
Most would agree that the strategies using 

knowledge derived from data appear to work 
better. On the other hand, the stochastic techniques 
do require large amounts of the data to get the 
knowledge. One cannot help wondering if the 
stochastic techniques do not waste the data on re-
learning the same speech-specific knowledge every 
time again and again. Is there any way to use the 
knowledge derived by the stochastic techniques 
from one data set on a new problem? What is it 
that the stochastic techniques derive from the data?  

 
Given that speech evolved to be heard, it 

should not be surprising that stochastic techniques 
optimized on large amounts of speech data turn out 
to be consistent with relevant properties of human 
speech production and perception. 

 

2. Linear discriminant analysis 
 
Linear discriminant analysis (LDA) is a 

stochastic technique that attempts to optimise the 
linear discriminability between classes in the 
presence of undesirable within-class variability 
(see e.g. [Hunt 1979, Brown 1987] for some 
examples of previous use of LDA in ASR). It 
requires that the class affiliation of each vector in 
the data used for the analysis be known (i.e. the 
database must be labelled).  

 
LDA is most often applied to sequences of 

several short-term feature vectors [Braun 1987]. In 
such  applications, the resulting linear 
discriminants form two-dimensional filters that are 
to be applied to the time-feature plane. In this 
paper, however, we review works that allow for the 
interpretation of LDA results in terms of either a) 
variable-resolution spectral bases that may indicate 
a certain spectral resolution of speech analysis, or 
b) the FIR RASTA filters that may indicate a 
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certain range of modulation frequencies, that are 
desirable for the classification of speech.   

 
 

 
Fig. 1 Two possible ways of forming 
labelled vectors for LDAT analysis of 
short-term spectra. 
 

In the first case, reported in [Malayath and 
Hermansky 2002, 2003] and shown in the A part of 
Figure 1, LDA was  applied to the vector space of 
logarithmic Fourier spectra of speech. In this case,  
the resulting LDA discriminant matrix consists of 
basis for the projection of the short-term spectra. 
Such basis represent an alternative to the 
conventional cosine basis of the cepstral 
projection.  The vector labelling is in this case 
trivial since each vector is clearly affiliated only 
with a single class. The second way of applying 
LDA was reported in [van Vuuern and Hermansky 
1997] and shown in the B part of Figure 1. In this 
case, the LDA was applied to the vector space 
formed from segments of temporal trajectories of 
spectral energies. The LDA discriminant matrix in 
this case consists of FIR filters to be applied on 
time trajectories of logarithmic spectral energies. In 
the reported experiments temporal vectors about 1 
s long were used.  Each vector spanned much more 
than a single phoneme, and was labelled by the 
phoneme at the centre of the vector.  

 

3. Critical-bands of hearing 
 

Fletcher observed that a signal with frequency 
components outside a certain “critical band” does 
not affect the detection of an another signal with its 
frequency components inside this “critical band” 
(see [Fletcher 1953] for a review of their earlier 
experiments that revealed existence of the critical 
bands). This is clear evidence of the ability of 
human hearing to separate different spectral 
components of the acoustic signal into individual 
bands for further processing. An important 
property of such “critical-band-like” spectral 
analysis is that its frequency resolution is lower at 
higher frequencies [Fletcher 1953]. A similar 
spectral scale has been observed in experiment 
with perception of the pitches of tones [Shower and 
Biddulph 1931]. Even though neither masking  
experiments nor experiments with the perception of 
pitch suggest that spectral profiles of sounds are 
the entities extracted and used by hearing for   
sound classification, benefits of critical-band-like 
spectral resolution in ASR is well established 
through years of comparative ASR experiments. 
Critical-band-like spectral analysis is often 
emulated in speech processing by weighted 
summations of the short-term Fourier spectrum 
[Davis and Mermelstein 1980, Hermansky 1990].  

 
 Malayath and Hermansky [Malayath and 

Hermansky 2002, 2003] applied LDA to short-term 
spectral vectors from Fourier analysis (20 ms 
hamming window, 10 ms analysis step) of all 
monophthong vowels from the OGI Stories 
database (OGI Stories contains about 3 hours of 
fluent American English telephone-quality speech 
from more than 200 adult speakers of both genders, 
hand-labelled by phonemes). The LDA was used to 
find such projections of the logarithmic short-term 
spectrum (spectral basis) that would allow for 
optimal discrimination among the vowels.  

 
The first four spectral basis from their LDA 

analysis are illustrated in Fig. 2. Notice that the 
period of these spectral basis is shorter at lower 
frequencies. Subsequently, speech analysis that 
employs such spectral basis has higher spectral 
resolution at lower frequencies. [Malayath and 
Hermansky 2002, Malayath and Hermansky 2003] 
show by sensitivity analysis of an emulated 
critical-band filter-bank and the LDA-derived 
spectral projection that the spectral resolution 
implied by spectral basis in Fig. 2 is very similar to 



the spectral resolution of the auditory-like Bark 
frequency scale (Fig. 3). 

 
This finding supports earlier results of [Umesh 

et al. 1997] who derived auditory-like frequency 
warping by minimizing the differences between 
speech from different talkers. 

 
        

 
 
 

Figure 2 Spectral basis derived by 
LDA technique  

 

  
 

Figure 3 Sensitivity to frequency change of 
a synthetic formant for three different 
spectral analysis techniques. As expected, 
the cepstral projection yields approximately 
uniform sensitivity while the sensitivity of 
the LDA-derived projection is similar to 
the sensitivity of the emulated critical-band 
filter-bank 

 
The optimality of the logarithmic-like spectral 
scale in the discrimination of vowels is not 
surprising. Changes in the position of the tract 
constriction cause roughly equal relative changes 
in formant frequencies. That is: when the first 

formant changes from its initial position around 
500 Hz by say 10 Hz, the second formant moves 
from its initial 1500 Hz by about 30 Hz and the 
third by about 50 Hz) i.e. the resulting vowel 
spectrum changes about uniformly on the 
logarithmic frequency scale.  
 

4.    Perception of modulations 
 

Since early experiments in perception of 
modulated signals [Riesz 1928] it has been known 
that the ear is most sensitive to modulations of 
around 4 Hz. This finding has been subsequently 
verified a number of times (see [Kay 1982] for a 
review). Further, the extensive experiments of 
Drullman and his colleagues [Drullman et al 1994] 
and Arai and his colleagues [Arai et al 1999] have 
shown that only the spectral envelope changes 
between  about 1 and 15 Hz are necessary for 
maintaining high intelligibility of speech.  

 
For the purpose of modeling, the sensitivity 

of human hearing to spectral envelope changes can 
be emulated by filtering temporal trajectories of 
computed parameters. This has been done in 
RASTA processing of speech [Hermansky and 
Morgan 1994] to attenuate features with rates of 
change that are not expected for speech. The initial 
ad hoc form of the RASTA filter was optimised on 
a relatively small series of ASR experiments with 
noisy telephone digits. The form of the optimised 
RASTA filter independently confirmed the 
experiments of  Drullman et al and Arai et al. – the 
filter passed components between 1 and 15 Hz and 
attenuated slower and faster changing parameters. 

 
    Van Vuuren and Hermansky formed a 101-

dimensional vector space from logarithmic outputs 
of an emulated critical-band filter-bank 
[Hermansky 1990] with vectors labelled by their 
respective phoneme classes. Each vector then 
spanned about 1 s at a 100 Hz sampling frequency.  
LDA analysis yielded a 101 X 101 scatter matrix, 
decomposed into its principal components. Then 
the principal vectors were used to represent FIR 
filters, which most efficiently (with respect to the 
within-class and the across-class variability) 
mapped the 101-dimensional input space to a 
single point of the output space. Since the target 
classes were context independent phonemes (just 
as in the previous experiment in the LDA design of 



the spectral basis), the FIR filters designed in that 
way attempted to compensate for a coarticulation 
with neighbouring phonemes. Further, they also 
attempted to compensate for other sources of non-
linguistic variability such as noise. 

 
 Frequency responses of the first three FIR 

filters derived from about 60 hours of the 
forcefully-aligned  Switchboard database are 
shown in Fig. 4 from [Hermansky 1998]. Filters for 
different frequency channels are similar. The 
frequency characteristic (shown at in the right part 
of the figure) are generally consistent with RASTA 
[Hermansky and Morgan 1994], and delta, and 
double-delta features of speech [Furui 1981]. 
However, the impulse responses of the data-
derived filters shown in the left part of the figure 
suggest the preference for the zero-phase filters. 
Effective parts of the impulse responses appear to 
span at least 250 ms. An interesting fact is that the 
LDA filters derived at different frequencies (not 
shown here) are roughly the same, i.e. the filters at, 
say, 500 Hz do not noticeably differ from the 
filters derived at 3 kHz. This result would support 
the notion of the second (post-cochlear) time 
constant, hypothesized since the early works of 
Gabor [Gabor 1946]. 

 
  The general characteristics of the data-derived 

RASTA filters appear to be relatively independent 
of the particular database used for their design. The 
most important processing involves a mild 
temporal lateral inhibition in which the average of 
several spectral values around the current time 
instant is subtracted from the weighted average of 
spectral values from surrounding past and future 
contexts. Next is the difference between weighted 
averages from left and right contexts of the current 
frame (the first derivative of the first discriminant 
vector), followed by an aggressive Mexican-hat 
temporal lateral suppression (the second derivative 
of the first discriminant vector) implying quite a 
narrow band-pass filter with a 12dB/oct slope. 
Such impulse responses can be interpreted as a 
difference of two Gaussians (the first discriminant) 
and its derivatives (higher discriminants). 
Mexican-hat-like dynamics-enhancing functions 
are hypothesized to be important for scene 
interpretation by the human visual system [Marr 
1982]. 

    

 
Figure 4 Impulse and frequency responses 
of the first three discriminant vectors from 
the LDA-derived discriminant matrix. The 
filters for the 5 Bark frequency channel are 
shown here. Filters for the other carrier 
frequencies studied (between 1 and 14 Bark) 
are very similar. 
 

5. Data-guided processing and human 
auditory perception. 

 
 Spectral bases derived by LDA shown in Fig. 2 
were applied to deriving a small number of 
linearly-separable features from the short-term FFT 
logarithmic power spectrum. The only built-in 
prior knowledge from hearing is the use of the 
power spectrum. (This may be justified by the 
frequency selectivity of human cochlea and by the 
one-way rectification of auditory hair-cell firings). 
The LDA technique is otherwise rather ignorant in 
matters of human psychophysics and/or physiology 
and merely attempts to do the engineering job of 
efficient separation of speech sound classes. Yet, it 
delivers spectral resolution that is consistent with 
human hearing! 

    The same may be said of LDA-derived 
RASTA filters. The impulse responses could have 
been highly concentrated in time but they are not, 
implying that it is beneficial for the identification 
of phonemes in running speech to collect data from 



relatively large time spans, significantly exceeding 
the typical 10-20 ms length of the analysis window 
[Yang et al. 2000]. Rather, consistently with the 
"critical time interval" observed in forward 
temporal masking and many other perceptual 
phenomena, the time span for information 
extraction is several hundreds of ms. Frequency 
responses of the dominant discriminants are band-
pass, passing the range of modulation frequencies 
between roughly 1 Hz and 15 Hz, just where 
human hearing is the most sensitive. Thus, again, 
the temporal processing that is needed for a good 
classification of phoneme-like speech sounds is 
quite consistent with temporal properties of human 
hearing. 

 
     

 
Fig. 5 Optimal distribution of signal energy in 
noisy channel (adopted from [Galagher 1968]) 
 

Why would optimization of a signal processing 
module on speech data result in human-like 
processing? Are the properties of human hearing 
imprinted by speech production mechanism on 
speech signal? Come to think of it, what else 
should we expect? Information theory teaches that 
optimal signal for communication through a noisy 
channel should confirm to properties of the channel 
[Gallager 1968]. Then, imprinted on the signal, one 
should see some properties of the communication 
channel for which the signal was designed. Hearing 
likely existed before speech evolved - all parts of 
the human speech production also serve more life-
sustaining function than speech production. It thus 
appears likely that they were adopted for speaking 
later in the course of human evolution. Why would 
not the forces of nature follow the same optimal 
strategy and form speech to obey the same optimal 
principles, i.e. to form it in such a way that it is 
well heard? As a result, when engineer attempts to 

design an optimal processing strategy, she could 
end up with the strategy that emulates human 
hearing! 
 

6. Summary 
We discussed speech processing techniques 

that attempt to optimise processing in such a way 
that the goal of the processing, i.e. the extraction of 
information from the speech signal, is better 
achieved. Such techniques form a bridge between 
signal processing and stochastic pattern 
classification and subsequently are trained on large 
amounts of speech data. The consistency of 
resulting signal processing modules with some 
basic properties of human hearing support the 
notion of speech production evolving to best match 
the capabilities of hearing. 
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