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ABSTRACT The notion of modulation frequency is quite well understood for 

many signals that are generated synthetically. A simple case

consists of an amplitude modulated fixed-frequency carrier Physical evidence points to the importance of a concept called

“modulation frequency.” This dimension exists jointly with

standard Fourier or acoustic frequency. Thus, akin to other time-

varying analysis, we seek a two-dimensional representation, the

“modulation spectrum,” where the first dimension is the well-

known acoustic frequency and the second dimension is

modulation frequency. We describe some deficiencies in previous

discussions of this concept, and then address those deficiencies

via a homomorphic approach. We also reduce previous

difficulties in homomorphic demultiplication by integrating this

processing into modulation spectra and, in particular, show how

assumption of analytic and relatively narrowband sub-bands

allows more accurate and practical use of homomorphic 

demultiplication. Lastly, we show how an unambiguous

demultiplication concept is only consistent with complex

modulator envelopes. The assumption of complex envelopes is 

necessary for accurate modulation spectral analysis and filtering.
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where the modulating signal m t is real and non-negative and

has an upper frequency band limit suitable for its perfect and easy

recovery from 

( )

( )s t . It is straightforward that the modulation

frequency for this signal should be the Fourier transform of the

modulating signal only
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But what is a two-dimensional transform of acoustic versus 

modulation frequency? Namely, how should this signal be

represented as the two-dimensional distribution ( , )P , where

is modulation frequency and  is acoustic frequency?

Moreover, what should happen for an arbitrary signal, say speech

or audio?

1. INTRODUCTION 2.1. Previous Definition

A modulation transform or modulation filtering can be performed

via a two-dimensional transformation [5,6], which is computed

through a three-step process. The process begins with a base 

transform which transforms input signal to a time-frequency

representation (e.g. short-time Fourier Transform). Then a

nonlinear detection operation (e.g. magnitude square or Hilbert 

envelope) is performed on each base transform sub-band to

extract signal envelopes. A second transform is then performed 

across time within each sub-band. If the base transform is a 

Fourier transform the whole process yields an acoustic frequency

versus modulation frequency representation that is usually 

referred as “modulation spectrum.” Acoustic frequency

commonly corresponds to the frequency axis of the first 

transform and modulation frequency corresponds to the

independent variable of the second transform.

Zadeh first proposed that a separate dimension of modulation

frequency could supplant the standard concept of system function

frequency analysis [1]. His proposed two-dimensional system

function had two separate frequency dimensions—one for

standard frequency and the other a transform of the time

variation. This two-dimensional bi-frequency system function

was only defined, but was not analyzed. Kailath followed up nine

years later [2] with the first analysis of this joint system function.

More recently, Gardner (e.g. [3,4]) greatly extended the concept

of joint frequency analysis for cyclostationary systems. However, 

transforms that are used in compression and for many pattern

recognition applications usually have a need for invertibility

which cyclostationary analysis does not provide. Indeed, the

notion of filtering or coding in modulation offers potential for

new forms of noise removal, source separation, signal

modification, and efficient coding.
This transform, followed by modification or quantization, and

then followed by its inverse, is the approach representing an

analysis/synthesis or modulation filtering system. Closely related

are filterbank or vocoding approaches (e.g. [7]). In all of these

cases, an analogous operation for base transform phase is not

defined. For reconstruction from modulation spectra, original or

quantized input signal phase is directly combined with inverse

transformed modulation spectrum magnitude, sometimes with 

added approximating iterations (e.g. [8]).

2. BACKGROUND

For further progress to be made in the understanding and 

applications of modulation spectra, a well-defined foundation for

the concept of modulation frequency analysis/synthesis needs to

be established. By “acoustic frequency” we mean an exact or 

approximate conventional long-time or short-time Fourier

decomposition of a signal. “Modulation frequency” is the

dimension that this section will begin to strictly define.
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While perfect reconstruction is possible for some of the proposed 

modulation spectral transform approaches (e.g. [5,6]), as we often

observe empirically, inverting modified or significantly quantized

modulation spectra produces mild to profound undesired artifact. 

The detailed reasons for these artifacts are multiple and beyond

the scope and intent of this paper. However, much of the 

distortion is related to the above lack of a modulation spectral

transformation or filtering operation on signal phase.

The main claim of this paper is that the modulation filtering

problem, posed as filtering on the magnitudes resulting from a 

modulation transform, is conceptually incomplete. The explicit

assumption of a modulation (multiplying) process producing the

observed signal and an explicit assumption of superposition are

missing. As we will show, inclusion of these two assumptions via

a homomorphic approach solves multiple existing conceptual

problems with modulation spectra and also suggests an approach

for modulation spectral phase. Furthermore, the previous

assumption of a real and non-negative modulator, even for real 

input signals, is demonstrated to be incomplete.

Our problem statement and analysis below represents a

rediscovery of previous homomorphic demultiplication work by

Oppenheim [9] and Stockham [10]. Nevertheless, we 

substantially extend this previous work by integrating it into the

problem of modulation spectral analysis/synthesis. In particular, 

the use of a complex one-sided (in frequency) filterbank for the

base transform, before homomorphic deconvolution, allows for a

substantially improved fit of an analytic signal to the complex

logarithm needed in homomorphic demultiplication.

Furthermore, we show that the structure of a homomorphic 

analytic signal is constrained in useful ways [11] yet still allows

the important and common possibility of complex modulation.

2.2. Modulation Model

A fundamental concept for the study of modulation spectra is the

notion of a modulator signal multiplying (modulating) a carrier

signal, which results in the sub-band signal which we observe. 

Consistent with previous discussions of modulation spectral 

analysis, we make these assumptions for each sub-band: 

1. ( )s t is the observed signal from one complex frequency sub-

band or transform index. 

2. c t is a narrowband complex high frequency “carrier.” ( )

3. is a positive real “modulator” with no significant

frequency content close to or above the carrier frequency.

( )m t

Assumption 3, specifically of a positive real modulator, is, to the

best of our knowledge, implicit in all previous published

descriptions of modulation spectra. However, as will be seen, this

assumption is too restrictive and inconsistent with a goal of true

demultiplication.

2.3. Homomorphic Demultiplication

In the 1960’s, well before current interest in modulation spectral

analysis developed, the question of decomposing modulation in

systems satisfying generalized superposition were studied in

general by Oppenheim beginning with [9]. This general 

formulation became popular, and still is, for the different, but

dual, problem of homomorphic deconvolution. The first to apply 

this general formulation to decomposing multiplication was

Stockham beginning with [10]. This is the same Stockham who

became known for his work on the enhancement of the Caruso

and Watergate tapes [12], which were applications of blind 

deconvolution and not demultiplication.

The review in this section is based directly upon the work of

Oppenheim et al [13]. Applying the general homomorphic

system to modulation results in a homomorphic system P with 

superposition rule

1 2 1 2
( ) ( ) ( ) ( )P s t s t P s t P s t  (3) 

and with homogeneity rule 

( ) ( )
c

P s t cP s t (4)

As shown by Oppenheim [14], any homomorphic system can

have a canonic representation which is a cascade of a general

transformation , a linear system T , and the inverse

transformation
1

. For the above homomorphic system for

multiplication, the transformation is which in general is 

required to be a complex log.

logP

As noted by Oppenheim et al [13], an unconstrained complex

logarithm does not produce a unique mapping ( ) ( )log t ts s .

Uniqueness can be obtained by constraining the complex log to

be a principal value; however, this definition will violate the

additivity of equation (3). Oppenheim et al [13] worked around

this problem by defining a clever yet complicated procedure

which requires knowledge of a continuous signal for more than

an instant of time.

2.4. Homomorphic Demultiplication as a Detector

( ) exp ( )g t g t ( )g t

log ( ) ( )s t s t( )s t Linear
System T

complex
log

complex
exponential

Figure 1. Complex logarithm homomorphic system for

multiplication.

For our goal of modulation spectral analysis, we can update the

above system by assuming that figure 1 serves as a detector for 

each channel (sub-band) of a filterbank or transform index of a

short-time transform. Identical detectors can be used for each

sub-band. Furthermore, as is the goal of modulation spectral 

analysis or filtering, the linear system T should involve a

transform pair. We thus propose the approach below.

We start with a real bandlimited input (e.g. one real sub-band

output of a filterbank or short-time Fourier transform) for ( )s t .

An analytic signal is then formed via, for

example, Hilbert transforms. Alternatively, the analytic signal

can come directly from a positive frequency sub-band output of a 

one-sided (positive frequency index) complex filterbank.

Recalling our modulation model, and assuming the carrier is a

unimodular phase signal, namely , we end up inferring

a decomposition of the input analytic signal 

ˆ( )ˆ ˆ( ) ( ) j s ts t s t e

ˆ( ) 1c t
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ˆ ˆ( ) ( ) ( ) ( ) exp{ ( )}ˆs t m t c t m t j c t  (5) 

where by Bedrosian [15], c must be the analytic signal of the

carrier. Futhermore, from [11], the homomorphic analytic

signal

( )ˆ t

ˆlog ( )s t is minimum phase and not subject to the non-

uniqueness problems of the complex logarithm which plagued 

earlier efforts for complex logs of more general signals. 

3. SIMULATION RESULTS 

3.1 Real Modulator 

For analytic signals, we first assume that 

ˆ ˆ ˆ( ) log ( ) log ( ) ( ) ( ) ( )s t s t s t j s t m t c t (6)

where ˆ( ) log ( )m t s t

ˆ( ) ( )j s t j t

wholly represents the modulator and

( )c t wholly represents the carrier. This

assumption is consistent with assumption 3 in above section 2.2 

and is commonly assumed in modulation spectral analysis.

Figure 4 shows the effect of a high-pass filter for the linear

transformation . In this example, we want to attenuate the

frequency components below 250 Hz in a 600 Hz band-limited

real modulator which previously multiplied a 3500 Hz carrier.

The following steps were taken sequentially:

T

1. Perform equation 6. 

2. High-pass filter ˆ( ) log ( )m t s t . No change to c t ˆ( ) ( )j s t .

3. Perform the inverse of equation 6. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-20

0

20

40

60

d
B

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-20

0

20

40

60

Frequency (Hz)

d
B

Figure 2. High-pass modulation filtering result in the frequency

domain. For the top panel, the thick blue line represents the 

spectrum of the unfiltered input signal, and the thin red line is the

spectrum of the signal processed with equation 6. About 30 dB

attenuation is achieved for the low frequencies of the modulator.

For the bottom panel, which is used for comparison, the thick

blue line represents the same spectrum of the unfiltered input

signal, and the thin red line is the spectrum of a signal with pre-

filtered modulator.

The spectrum of the filtered signal is plotted in the upper panel of

figure 2. For comparison, we synthesized another signal by

directly modulating the same carrier with a signal that is 

originally filtered by the same high-pass filter aforementioned;

the resulting spectrum is plotted in the lower panel of figure 2. 

We can observe that for the above proposed modulation filtering

steps, about 30-35 dB attenuation was achieved at the low

frequency bands of the modulator, while about 40-50 dB 

attenuation was achieved for directly filtering on modulator. This

difference in modulation attenuation is insignificant for most 

speech and audio applications, because the achieved 30 dB 

attenuation is already substantially beyond the ear’s perception of

modulation [16].

3.2 A Real Modulator is Too Restrictive

It is commonly assumed that the modulator is positive and real 

and hence has perfectly symmetric magnitude about the carrier.

This assumption gets even more restrictive and impractical for

modulation spectra, where ( )s t or ˆ( )s t come from a filterbank or 

equivalent transform sub-band. In that case, symmetry of the

modulator magnitude is considered with respect to the center of

the sub-band. Moreover, even when a carrier is centered within a

sub-band, side-lobes in neighboring sub-bands will not

necessarily be centered. Thus, for an arbitrary signal input, this

rare symmetric case requires that the input signal carrier be

synchronized with the sub-band center frequency, that the 

modulator be symmetric about this carrier, and that this

symmetry holds in all other sub-bands. This concern about

assumed yet incorrect symmetry also hold for previous

approaches to modulation spectra, independent of homomorphic 

processing. Thus, for both theoretical evaluation and for practical 

cases, the notion of a complex envelope is necessary. While this

broader assumption would normally cause an ambiguity between

modulator and carrier phase, homomorphic demultiplication, for

analytic input signals, removes this ambiguity.

Figure 3 shows a homomorphic demultiplication system which

requires no assumption of a real envelope. Poletti [11] used the 

derivative of the log analytic signal quantity to define

instantaneous complex frequency. Our need for a complex

modulator is analogous. For a real and positive modulator, the

system in figure 3 simplifies to m t . For a complex

modulator, it generalizes appropriately. If the linear system T is,

for example, a Fourier transform, represents the carrier

frequency. The remaining output magnitude then relates to the

Fourier transform of a complex (asymmetric in frequency)

modulating envelope. Filtering in modulation is possible via

operations on output magnitude and phase, followed by

reconstruction by an inverse linear transform, an integral or

accumulator (to invert the derivative) and a complex exponential.

ˆ( ) log ( )s t

(0)X

Re ( )s t

T
Im ( )j s t

ˆ( )s t

Im

Re
( )X

( )X

Linear
System

deriv-
ative

log

Figure 3. Detector for proposed homomorphic demultiplication

system. For a complete modulation spectral analysis system, one

of these detectors would be used for each sub-band. For a

complete analysis/synthesis system, the inverse of figure 5 would

also be required for each sub-band.

Figure 4 demonstrates that the above system, depicted in figure 3, 

and its inverse can indeed filter complex envelopes. This example

shows that all modulation components can be removed only if the
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complex envelope assumption is made.  Similar results would be 

expected for other input signal possibilities and other types of

modulation filtering.

While the results in this paper are for continuous-time signals,

similar results, after accounting for aliasing and circularity,

should hold for discrete time. Recursive implementations should

be possible for homomorphic demultiplication, thus removing the

implementation challenges of the complex log and exponential.
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