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Abstract 

Recent auditory physiological evidence points to a 
modulation frequency dimension in the auditory cortex. This 
dimension exists jointly with the tonotopic acoustic 
frequency dimension. Thus, audition can be considered as a 
relatively slowly-varying two-dimensional representation, the 
“modulation spectrum,” where the first dimension is the 
well-known acoustic frequency and the second dimension is 
modulation frequency. We have recently developed a fully 
invertible analysis/synthesis approach for this modulation 
spectral transform. A general application of this approach is 
removal or modification of different modulation frequencies 
in audio or speech signals, which, for example, causes major 
changes in perceived dynamic character. A specific 
application of this modification is single-channel multiple-
talker separation.   

1. Introduction 

Zadeh first proposed that a separate dimension of modulation 
frequency could supplant the standard concept of system 
function frequency analysis [1]. His proposed two-
dimensional system function had two separate frequency 
dimensions—one for standard frequency and the other a 
transform of the time variation. This two-dimensional bi-
frequency system function was only defined, but was not 
analyzed. Kailath followed up nine years later [2] with the 
first analysis of this joint system function. More recently, 
Gardner (e.g. [3,4]) greatly extended the concept of joint 
frequency analysis for cyclostationary systems. These 
cyclostationary approaches have been widely applied for 
parameter estimation and detection. However, transforms 
that are used in compression and for many pattern 
recognition applications usually have a need for invertibility. 
Cyclostationary analysis does not provide an 
analysis/synthesis framework. 

Evidence for the value of modulations in the perception 
of speech quality and in speech intelligibility has come from 
a variety of experiments by the speech community. For 
example, the concept of an acoustic modulation transfer 
function [5], which arose out of optical transfer functions 
(e.g. [6]), has also been successfully applied to the 
measurement of speech transmission quality (Speech 
Transmission Index, STI) [7]. More direct studies on speech 
perception [8] demonstrated that the most important 
perceptual information lies at modulation frequencies below 
16 Hertz. More recently, Greenberg and Kingsbury [9] 
showed that a “modulation spectrogram” is a stable 
representation of speech for automatic recognition in 
reverberant environments. This modulation spectrogram 
provided a time-frequency representation that maintained 
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the 0 to 8-Hertz range of modulation frequencies 
rmly for all acoustic frequencies), and emphasized the 
tz range of modulations. 
 the remainder of this paper, we shall illustrate how an 
is/synthesis theory of modulation frequencies can be 
lated and show some examples of its use in the 
ulation of speech signals. 

 Modulation Spectral Model 

rther progress to be made in the understanding and 
ations of modulation spectra, a well-defined foundation 
e concept of modulation frequency analysis/synthesis 
 to be established. In this section we will propose a 
ation that is based upon a set of necessary conditions 
two-dimensional acoustic frequency versus modulation 
ncy representation. By “acoustic frequency” we mean 

act or approximate conventional Fourier decomposition 
ignal. “Modulation frequency” is the dimension that 
ction will begin to strictly define. 
e notion of modulation frequency is quite well 

stood for signals that are narrowband. A simple case 
ts of an amplitude modulated fixed-frequency carrier 

1
( ) ( ) cos

c
s t m t tω=

 the modulating signal ( )m t  is non-negative and has 

per frequency band limit suitable for its perfect and 

recovery from 
1
( )s t . It is straightforward that the 

lation frequency for this signal should be the Fourier 
orm of the modulating signal only 

( ) { ( )} ( )j j tM e F m t m t e dt
ω ω

∞
−

−∞

= = ∫
t what is a two-dimensional distribution of acoustic 
 modulation frequency? Namely, how would this signal 
resented as the two-dimensional distribution ( , )P η ω ,

 η  is modulation frequency and ω  is acoustic 

ncy?  
 begin answering this question, we can further 

ify the model signal to have a narrowband cosinsoidal 
lator 

( ) (1 cos ) cos
m c

s t t tω ω= +
er to allow unique recovery of the modulating signal, 

odulation frequency
m

ω is constrained to be less than the 

r frequency
c

ω . The additive offset allows for a non-

ve modulating signal. Without loss of generality we 
e that the modulating signal is normalized to have peak 
 of 1± allowing the additive offset to be 1. 



The process of amplitude demodulation, whether it is by 
magnitude, square-law, Hilbert envelope, cepstral or 
synchronous detection, or other techniques, is most generally 
expressed as a frequency shift operation. Thus, a general 
two-dimensional representation of ( )s t  has the dimensions 

acoustic frequency versus frequency translation. For 
example, much as in the bilinear formulation seen in time-
frequency analysis, one dimension can simply express 
acoustic frequency ω  and the other dimension can express a 
symmetric translation of that frequency via the variableη :

*( / 2) ( / 2)S Sω η ω η− +
where ( )S ω is the Fourier transform of ( )s t

( ) { ( )} ( ) j tS F s t s t e dtωω
∞

−

−∞

= = ∫
and

* ( )S ω  is the complex conjugate of ( )S ω . This 

representation is similar to the denominator of the spectral 
correlation function described by Gardner [4]. 

Note that there is a loss of sign information in the above 
bilinear formulation. For analysis/synthesis applications, 
such as in the approaches discussed later in this paper, phase 
information needs to be maintained separately. 
In the same spirit as previous uses and discussions of 
modulation frequency, an ideal two-dimensional 

representation ( , )
ideal

P η ω for ( )s t  should have significant 

energy density only at only six impulsive points in the 
( , )η ω  plane 

( , ) (0, ) ( , ) ( , )

(0, ) ( , ) ( , )

ideal c m c m c

c m c m c

P η ω δ ω δ ω ω δ ω ω

δ ω δ ω ω δ ω ω

= + + −

+ − + − + − −
Where ( , )δ η ω is the standard Dirac delta function. For the 

above ideal two-dimensional representation, the desired 
terms are jointly at the carrier and modulation frequencies 
only, with added terms at the carrier frequency for DC 
modulation, to reflect the above additive offset of the 
modulating signal. However, going strictly by the definitions 
above, the Fourier transform of the narrowband cosinsoidal 
modulator ( )s t is 

{ }

{ }

{ }

( ) { ( )} {(1 cos ) cos }

1
( ) ( )

2

1
( ) ( )

4

1
( ) ( )

4

m c

c c

c m c m

c m c m

S F s t F t tω ω ω

δ ω ω δ ω ω

δ ω ω ω δ ω ω ω

δ ω ω ω δ ω ω ω

= = +

= − + +

+ + + + + −

+ + + + + −

This transform, when expressed as a bilinear formulation 
*

( / 2) ( / 2)S Sω η ω η− +  has much more extent in both η
and ω  than desired. A comparison of the ideal and actual 
two-dimensional representation is shown in Figure 1. 
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e 1: Two-dimensional representation of 
usoidal amplitude modulation. 

e solid lines of Figure 1 represent the support regions 

th ( / 2)S ω η− and
* ( / 2)S ω η+ . Thicker lines 

ent the double area under the carrier-only terms 
e to the modulated terms. The small dots, including 

ne hidden under the large dot at ( 0, )
c

η ω ω= = ,

ent the support region of the 

ct
*( / 2) ( / 2)S Sω η ω η− + . The three large dots 

ent the ideal representation, ( , )
ideal

P η ω , of modulation 

ncy versus acoustic frequency. 
can be observed from Figure 1 that the 

entation,
*

2 2
( ) ( )S Sω η ω η+ − , has more impulsive 

 than the ideal representation. Namely, the product 
*

2
) ( )Sη ω η+ −  is underconstrained. To approach the 

representation, two conditions need to be added: 1) A 
l which is convolutional in ω  and 2) a kernel which is 
licative inη . Thus, a sufficient condition for the ideal 

lation frequency versus acoustic frequency distribution 

{ }*( , ) ( / 2) ( / 2) ( ) ( )
ideal m c

S Sη ω ω η ω η φ η φ ω= − + ∗
important to note that the above condition does not 
e that the signal be simple cosinusoidal modulation. 
 principal, for any signal 

( ) ( ) ( )s t m t c t=
 ( )m t is non-negative and band limited to frequency 

m
ω and ( )c t has no frequency content below

m
ω can 

a modulation frequency versus acoustic frequency 
ution in the form of the above ideal modulation 
ncy versus acoustic frequency distribution. 

n example of an implicitly convolutional effect of 

)  is the limited frequency resolution that arises from a 

orm of a finite duration of data, e.g. the windowed time 
is used before conventional short-time transforms and 

banks. The multiplicative effect of ( )
m

φ η  is less 

s. Commonly applied time envelope smoothing has, as 

uency counterpart, low pass behavior in ( )
m

φ η . Other 

nt approaches can arise from decimation already 
t in critically-sampled filterbanks. Note that the non-

η
2 cω0 2 mω

ω



zero terms centered around 2
c

η ω= ± , which are well above 

the typical pass band of ( )
m

φ η , are less troublesome than the 

typically much lower frequency quadratic distortion term(s) 

at 2
m

η ω= ± . Thus, broad frequency ranges in modulation 

will be potentially subject to these quadratic distortion 
term(s). 

2. Talker Separation 

The problem of talker separation is also called “co-channel 
speech interference.” One past approach to the co-channel 
speech interference problem is blind signal separation (BSS) 
that approximately recovers unknown signals or “sources” 
from their observed mixtures [10]. Typically, these mixtures 
are acquired by a number of sensors, where each sensor 
receives a different combination of the source signals.  

However, a different and perhaps complementary 
approach can utilize modulation spectra. Figure 2 shows a 
joint acoustic/modulation frequency transform as applied to 
two simultaneous speakers. Talker A is saying “two” in 
English while talker B is saying “dos” in Spanish. This data 
is from [11]. 
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Figure 2: Spectrogram (left) and joint acoustic/modulation 
frequency representation (right) of the central 450 
milliseconds of “two” (speaker 1) and “dos” (speaker 2) 
spoken simultaneously by two speakers. The y-axis of both 
representations is standard acoustic frequency. The x-axis of 
the right panel representation is modulation frequency, with 
an assumption of Fourier basis decomposition.

The right side of Figure 2 shows distinct and isolated 
regions of acoustic information associated with the 
fundamental pitch and its first and aliased harmonics of the 
two distinct speakers. These pitch energy locations are both 
in modulation frequency (at the respective speaker’s pitch 
rate and its harmonics) and in acoustic frequency (quite 
notably, at the respective speaker’s resonant frequencies). 

Since it is possible to arbitrarily modify and invert this 
transform [12] the clear separability of the regions of 
sonorant sounds from different simultaneous talkers can be 
used to design talker-separation mask filters. 

3. Speech Modification 

Psychoacoustic evidence [13] indicates that perceptual 
modulation filter shapes approximately imitate a constant-Q
bandwidth. Also, results in speech recognition studies also 
point to advantages of a modulation wavelet transform in 
automatic speech recognition [14]. For audio coding 
purposes, we recently have proposed the use of an octave-
band non-uniform modulation transform to mimic the 
spacing of modulation filter sub-bands of the human auditory 
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ed in the structure of Figure 3. The use of a non-
m second transform leads to a resulting representation 
 generates three dimensions: acoustic frequency, 
lation scale, and modulation time-shift. This approach 
ves phase, which has previously been found to be 
tant [16], of the modulation spectrum, via a potentially 
ated (the amount of decimation depends upon the 
 modulation time-shift waveform. 
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e 3: Structure of the proposed non-uniform modulation 
orm resulting in three dimensions: acoustic frequency, 
lation scale, and modulation time-shift. 

e structure of Figure 3 employs a time domain aliasing 
llation (TDAC) filter bank [17] as the first or “base” 
orm.  The TDAC filter bank possesses the desirable 
rties of producing complex outputs and providing 50% 
pping in time while maintaining critical sampling. The 
 filter bank uses alternating modified-discrete cosine 

orms (MDCT) and modified-discrete sine transforms 
T). Two neighboring MDCT and MDST transform 
 are temporally aligned and combined to form a single 
ex transform block.  The MDCT coefficients are taken 
 real part and the MDST coefficients are taken as the 
nary part of the complex coefficients. A magnitude 
ion operation is performed on the complex transform 
, which are then arranged into a time-frequency 
ution. 

 hierarchical lapped transform (HLT) [18] is used for 
cond stage transform of Figure 3. The HLT is a multi-
tion transform which maintains good time localization 
igh frequency components and good frequency 
tion for low frequency components.  The HLT is 
r in structure to a quadrature-mirror filter bank (QMF) 
he wavelet filter bank. The HLT is applied on the 
tude values in each acoustic frequency sub-band of the 
requency representation as shown in Figure 3. Note 
e HLT second transform is not performed on the phase 
 from the base transform. 
gure 4 shows an example of the above modulation 
um applied to the spoken letter “k.” Note that the 
e burst is clearly seen at the finer scales of modulation. 



Figure 4: The non-uniform modulation transform. 

Filtering in modulation spectra can be effected by simply 
masking chosen coefficients which result after the above non-
uniform modulation transform. If the mask is chosen to only 
have dependency upon modulation scale (and/or time shift) 
For example, Figure 5 shows spectrograms of the spoken 
sound “zero” before and after filtering out all modulation 
scales except for the finest scale. (All time shifts for this 
finest modulation scale were retained.) Quite notably, the 
filtered sound is highly intelligible yet virtually all sensation 
of pitch is removed. This observation raises questions about 
the kind of basis functions which are appropriate for the 
modulation dimension. It also suggests a highly redundant 
representation across modulation scales. 
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Figure 5: Spectrograms before (left) and after (right) all 
but the finest modulation scale were removed. 

4. Conclusions 

We have described the underlying conditions for an 
invertible modulation spectral transform. This transform, 
with linear spacing in modulation frequency, was applied to 
single-channel talker separation. We then extend the 
transform to a non-uniform (or scale) spacing in modulation 
and demonstrate its potential to represent and modify speech 
in new ways. 
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