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Abstract

Formulations of artificial neural networks are directly related to assumptions about neural coding in the brain. Traditional connectionist
networks assume channel-based rate coding, while time-delay networks convert temporally-coded inputs into rate-coded outputs. Neural
timing nets that operate on time structured input spike trains to produce meaningful time-structured outputs are proposed. Basic computa-
tional properties of simple feedforward and recurrent timing nets are outlined and applied to auditory computations. Feed-forward timing
nets consist of arrays of coincidence detectors connected via tapped delay lines. These temporal sieves extract common spike patterns in their
inputs that can subserve extraction of common fundamental frequencies (periodicity pitch) and common spectrum (timbre). Feedforward
timing nets can also be used to separate time-shifted patterns, fusing patterns with similar internal temporal structure and spatially
segregating different ones. Simple recurrent timing nets consisting of arrays of delay loops amplify and separate recurring time patterns.
Single- and multichannel recurrent timing nets are presented that demonstrate the separation of concurrent, double vowels. Timing nets
constitute a new and general neural network strategy for performing temporal computations on neural spike trains: extraction of common
periodicities, detection of recurring temporal patterns, and formation and separation of invariant spike patterns that subserve auditory objects.
© 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Neural timing networks; Time-delay neural networks; Temporal coding; Spiking neurons; Scene analysis; Temporal correlation; Auditory

neurocomputation

1. Introduction

Traditionally, neural coding assumptions from neuro-
science have informed the development of artificial neural
networks. By far the predominant assumption has been that
informational distinctions are encoded in profiles of average
discharge rate across neurons, i.e. which neurons fire how
frequently. Thus, which ‘places’ in cochleotopic, retinotopic,
and somatotopic maps are activated have been thought to
provide the basic information needed for form perception. In
these neural networks the pulsatile, sequential character of
spiking neurons is replaced by a continuously varying scalar
quantity that reflects spike rate.

There have always been alternative, temporal theories of
neural coding, however, in which information about the
stimulus is conveyed via time patterns that the stimulus
impresses on sensory neurons (Boring, 1942; Kiang, Wata-
nabe, Thomas & Clark, 1965; Mountcastle, 1967; Troland,
1929; Wever, 1949). The pulse trains produced by spiking
neurons are much more efficient transmitters of information
encoded in relative timings of events rather than numbers of
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events (MacKay & McCulloch, 1952). It is in the functional
context of processing temporally coded information, there-
fore, that neural architectures composed of ‘spiking
neurons’ really come into their own.

Two broad classes of temporal codes stand out. Differences
in temporal structure can arise through different times-of-arri-
val of spikes (latency- and synchrony-based codes) or through
differences in temporal patterning of spikes (interspike inter-
val and interval pattern codes). Different response latencies
and patternings can be produced either by extrinsic, stimulus-
locked responses of sensory receptors or through character-
istic intrinsic temporal response patterns (e.g. different
impulse responses). Thus there is a large space of possible
neural pulse codes that can be based on which channels
(labelled lines) are activated how much (rate-place codes),
on the relative times-of-arrivals (latency codes), on spike
patterning (temporal pattern codes), and even on joint
response properties of particular subsets of neural elements
(see Cariani, 1995, 1997b, 2001b; Mountcastle, 1967; Perkell
& Bullock, 1968; Rieke, Warland, de Ruyter van Steveninck
& Bialek, 1997; Sejnowski, 1999; Uttal, 1973; Wasserman,
1992).

In almost every sensory system, there exists temporal
structure in neural response that is potentially capable of
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Fig. 1. Temporal coding of pitch and timbre in the auditory nerve. Top: Stimulus waveform, Single formant vowel, FO = 80 Hz, F1 = 640 Hz, 60 dB SPL, 100
presentations/fiber. Left, peristimulus time histograms of the responses of 52 auditory nerve fibers of Dial-anestheized cats, arranged by fiber characteristic
frequency. Top right, stimulus autocorrelation function. Bottom right, global, ensemble-wide distribution of all-order interspike intervals. The most frequent
interval in the distribution is 12.5 ms, which corresponds to the stimulus fundamental period (1/F0 = 1/80 Hz) and the period of the low pitch that is heard.
Other intervals correspond to periods related to formant-region partials that determine vowel quality (timbre) (see Cariani & Delgutte, 1996; Cariani, 1999).

supporting sensory quality distinctions (Cariani, 1995,
1997b; Mountcastle, 1967; Perkell & Bullock, 1968).
Time structure related to stimulus quality exists in some
rather unexpected places, such as in the chemical senses
(Di Lorenzo & Hecht, 1993; Kauer, 1974; Laurent, 1999)
and color vision (Kozak & Reitboeck, 1974; Young, 1977).

In many systems, phase-locked responses permit different
response timings at different body locations to subserve
localization functions (Carr, 1993; von Bekesy, 1967). At
the behavioral level rather fine time-of-arrival disparities
can be distinguished: fish electroception (<1 ws) microse-
cond; bat echolocation, (<1 s to several ws), human inter-
aural time differences (10—40 ps) (Colburn, 1996), and
insect interaural time differences (1 ms) (Michelson,
1992). George von Bekesy reported human stimulus locali-
zations based on as fine as 1 ms disparities in somatocep-
tion, olfaction, and gustation (von Bekesy, 1967). Motion
detection in insect vision (Reichardt, 1961) and the limits of
vernier acuity (Carney, Silverstein & Klein, 1995) may
depend on comparisons of relative times of arrival in visual
channels with different retinotopic locations. Spike preci-
sions in visual systems on the order of a millisecond or
less that could support fine spatiotemporal distinctions
have been observed (Bialek, Rieke, van Stevenink & de
Ruyter, 1991; Reinagel & Reid, 2000).

All of these perceptual computations are explicable in
terms of temporal cross-correlation frameworks. The Jeffress
model of binaural localization computed temporal cross
correlations from phase-locked inputs (Jeffress, 1948). This
model was one of the very first neural networks to success-
fully account for specific aspects of perception, and it
inspired subsequent models in other sensory modalities.

Stimulus-driven time structure is especially evident in the
auditory system, where a great deal of psychophysical and
neurophysiological evidence suggests that such timing infor-

mation is used to subserve the representation of a number of
auditory qualities: pitch, timbre, rhythm, sound location. The
case of pitch is illustrative. Robust and pervasive correspon-
dences between patterns of human pitch judgment and the
global all-order interval statistics of populations of auditory
nerve fibers have been found in models, simulations and
neurophysiological studies (Cariani, 1999a; Lyon & Shamma,
1995; Meddis & Hewitt, 1991a; Slaney & Lyon, 1993).
Features of these population—interval distributions (Fig. 1)
closely parallel human pitch judgements (Cariani & Delgutte,
1996): the most frequent all-order interval corresponds to the
pitch that is heard, and the fraction of this interval amongst all
others corresponds to its strength (salience). Many seemingly-
complex pitch-related phenomena are readily explained in
terms of these population—interval distributions: pitch of the
missing fundamental, pitch equivalence (metamery), relative
phase and level invariance, nonspectral pitch, pitch shift of
inharmonic tones, and the dominance region. Timbres of
stationary sounds such as vowels correspond to distributions
of short (<5 ms) interspike intervals.

As a direct consequence of phase-locking, positions of
major and minor peaks in observed population—interval
distributions closely mirror those of their respective stimu-
lus autocorrelation functions. For complex stimuli with
unresolved harmonics (e.g. >2 kHz), population—interval
distributions reflect waveform envelopes. These distribu-
tions thus provide general-purpose autocorrelation-like
representations for stimulus periodicities up to the limits
of robust phase locking (~5 kHz). Rather than the temporal
cross-correlations that subserve localization, temporal auto-
correlations appear to subserve the computation of auditory
forms. The first neurocomputational model to compute
temporal autocorrelations to explain the pitches produced
by complex tones was J.C.R. Licklider’s time-delay
‘duplex’ network (Licklider, 1951, 1959).
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2. Neural codes and neural networks

The near ubiquity of spike timing information in sensory
processing begs the question of what kinds of neural archi-
tectures are generally needed to make use of it. Each kind of
neural code requires a correspondingly different kind of
neural network for its analysis. If one considers the basic
division between both channel-based, rate—place codes and
temporal codes, four basic transformations are possible
(place—place, place—time, time—place, and time—time). If
networks require differential weightings of connections to
distinguish different activation patterns and time delays to
distinguish differences of timing, then three broad classes of
networks are created: connectionist networks, time-delay
networks, and timing nets (Table 1).

Connectionist networks operate on across-element
discharge rate profiles in their inputs to produce meaningful
rate—coded output patterns (place—place transformations).
By far the majority of neural network research has focused
on feedforward, recurrent, and adaptive connectionist
networks.

Time-delay networks (TDNNs) traditionally transform
temporally-coded inputs into rate-coded outputs by incor-
porating inter-element time delays as well as connection
weights. The Jeffress model of binaural localization and
the Licklider model of pitch perception were auditory
time-delay networks that transformed temporally coded
inputs into spatial activation profiles in order to compute
temporal autocorrelations (for pitch) and cross-correlations
(for binaural localization). These models used coincidence
counters that combined coincidence detection with a subse-
quent integration (counting) process. Such architectures
transform the fine time patterns in their inputs to smoothed,
running averages of numbers of spike coincidences. Other
implementations of time-delay networks use arrays of oscil-
lators rather than delay lines and coincidence counters to
discriminate different periodicities (Wang, 1995). In both
kinds of implementations there is an explicit measurement
of periodicity that is associated with each particular
element, such that the output of the network is an across-
element profile of activated elements. Time-delay networks
can also be used to effect place—time transformations,
producing characteristic output time patterns when particu-
lar spatial patterns of activation are presented (as in central
pattern generators and in oscillator-networks that synchro-
nize on the basis of spatial input patterns).

Recently we have proposed another class of neural nets,
called timing nets, that operate on temporally-coded inputs

Table 1
General types of neural networks

to produce meaningful temporally-coded outputs (Cariani,
2001a). This paper discusses some of the basic computa-
tional properties of simple feedforward and recurrent timing
nets. Many of the basic properties presented here were also
outlined in that paper.

Much of our motivation for exploring the properties of
such networks has been driven by the quest for an explana-
tion of how the auditory system uses interspike interval
information for the computation of pitch. One needs to
explain how the auditory system is capable of reliably
making very fine pitch distinctions (<1% in frequency)
over very large dynamic ranges (>80 dB) using neural
elements that are, in comparison with the percept, relatively
coarsely tuned. This is the persistent ‘hyperacuity problem’
that currently exists for many sensory qualities (Rieke et al.,
1997). In the auditory system, frequency hyperacuity is
especially a problem at high sound pressure levels, where
rate-based frequency tunings broaden dramatically, but
perception remains precise. As a consequence of this broad-
ening, there are fundamental difficulties in accounting for
the precision and robustness of frequency discriminations in
terms of average discharge rates. However, interval infor-
mation, like frequency discrimination, remains exception-
ally precise over the entire dynamic range. Frequency
discrimination covaries with the amount of interval based
information, such that interval-based representations of
frequency account well for the decline in frequency discri-
mination as frequency increases and phase-locking weakens
(Goldstein & Srulovicz, 1977). As was noted above, the
interval patterns also explain an exceptionally wide range
of complex, subtle, and unexpected patterns of pitch
judgements.

Currently most auditory physiologists believe that a
time—place transformation is effected in the auditory path-
way by neural elements that are tuned to particular periodi-
cities (Langner, 1992). However, tunings of these elements
in the auditory pathway are coarse in comparison the pitch
distinctions they are thought to subserve. Further, these
tunings broaden at higher sound pressure levels (Krishna
& Semple, 2000; Rees & Mgller, 1987). There are other
problems with such accounts that have to do with differ-
ences between autocorrelational representations and those
based on modulation spectrum. Perception of pitches
produced by perceptually-resolved, lower-frequency
harmonics, for example, follows an autocorrelation-like
analysis rather than a modulation-based analysis of wave-
form envelopes (de Boer, 1976). If a time—place transfor-
mation were effected by the auditory system, then the

Type of network Inputs

Outputs

Connectionist network
Time delay network
Timing net

Spatial excitation patterns
Temporal spike patterns
Temporal spike patterns

Spatial excitation patterns
Spatial excitation patterns
Temporal spike patterns
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elements ideally should carry out a temporal autocorrelation
analysis, which would require that they have characteristics
of comb-filters. Unfortunately, thus far no such elements
with these characteristics have been observed, so that argu-
ably, there exist no strong neural candidates for the pitch
detectors that a time-to-place account would require. The
absence of precise and robust pitch detectors notwithstand-
ing, interspike interval distributions at early stages of audi-
tory processing do retain the requisite properties for neural
substrates of pitch (Cariani, 1999a). As a result, alternative
neurocomputational strategies that retain the information in
the time domain have been explored.

3. Feedforward timing networks

Alongside traditional connectionist networks and time-
delay networks, neural timing networks can be envisioned
that operate on time structure in their inputs to produce
interpretable temporal patterns in their outputs (Cariani,
2001c). These networks consist of coincidence detectors
and delay lines which analyze temporally-coded inputs.
Their closest precursors are simple functional models of
neural computation for which fine time structure is of
primary importance (Abeles, 1990; Braitenberg, 1961,
1967; Jeffress, 1948; Longuet-Higgins, 1989; MacKay,
1962; Reitboeck, 1989; Thatcher & John, 1977). Some
aspects of timing nets were inspired by the functional anat-
omy of cortical structures (Braitenberg, 1961; Reitboeck,
1989; Thatcher & John, 1977), while others were inspired
by signal-processing operations that they elegantly imple-
ment (Braitenberg, 1961; Cherry, 1961; Longuet-Higgins,
1987, 1989). There are also a number of time-domain audi-
tory processing models that operate on phase-locked spike
timing information to produce spatial patterns of activation
that serve as ‘central spectrum’ representations. Some of
these operate on local synchrony, either using coinci-
dence-based (Young & Sachs, 1979) or cancellation-like
operations (Colburn, 1996; Colburn & Durlach, 1978;
Culling, Summerfield & Marshall, 1998; de Cheveigné,
1998; Seneff, 1985, 1988). Other time-domain analyses
use global synchronies between non-neighboring frequency
channels as a means of implementing harmonic templates
for spatial-pattern representation of the pitches of harmonic
complex tones (Shamma & Sutton, 2000). Analogously,
early time-domain models operated on interspike interval
information within each frequency channel (Licklider,
1951, 1959; Lyon & Shamma, 1996), while later interval-
based models formed global temporal representations that
retain no ‘place’ information (Ghitza, 1988; Lyon, 1984;
Meddis & Hewitt, 1991a,b; Meddis & O’Mard, 1997,
Moore, 1997; van Noorden, 1982). Temporal correlation
models for binaurally-created pitches (Akeroyd & Summer-
field, 1999; Cariani, 1996, 2001a) are the closest existing
implementations to the feedforward nets presented here, in
that the global temporal structure of coincidences in output

of binaural cross-correlation arrays carries the information
that determines the pitch. Hypothetical neural timing archi-
tectures guide and are also guided by correlation-based
analyses of neural function (Abeles, 1990; Eggermont,
1990, 1993; Johannesma, Aertsen, van den Boogaard,
Eggermont & Epping, 1986). While the motivation in this
paper is primarily pragmatic, to see what useful signal
processing functions timing nets afford, our ultimate aim
is scientific, to widen the range of neurocomputational
hypotheses that are available to us we attempt to reverse-
engineer the brain.

Consider an array of coincidence detectors that have
inputs from two sets of tapped delay lines arranged in anti-
parallel orientation [Fig. 2(a)]. Two spike trains are fed in
from either end of the array and propagate through their
respective delay lines. Spikes in the two trains cross at
different points in the array; when there is simultaneous
arrival of spikes in both channels, the coincidence detector
at the crossing point produces an output spike (depicted in
the figure by spikes on the output lines below the detectors).
Many relative delays are realized by the slow conduction
times across the array such that each position along the
tapped delay line corresponds to a particular relative delay
between the input signals (Dj;). Since each coincidence
detector with a relative delay D; requires nearly simulta-
neous arrival of a spike in both lines in order to fire, each
spike in the output of the coincidence array represents the
joint occurrence of spike arrivals in the two inputs [Fig.
2(b)]. If spike trains are represented by binary-valued
(0,1) time series S; and S, (spike occurrence at time =1,
0 otherwise), then the output of a particular coincidence
detector Cy is Si()*S;(t—Dy).

3.1. Basic computations

Several basic computations can be carried out. First, the
cross-correlation function (CCF) of the two inputs can be
computed by counting the number of spikes in each output
channel (vertical gray bar) as a function of relative delay D;.
CCFE(Dy) = 28(1) * St — Dy), summed for each delay
channel over all times t (* denoting multiplication).
Their convolution can be computed by summing across
relative delay channels for each time step (horizontal gray
bar). Conv(t) = 38(1t) * Si(t — Dy), summed over all D; for
each time step. The operation is similar to the common flip/
shift/multiply method of computing convolutions. In terms
of spike train analysis, this would be a population peristi-
mulus time histogram. The distribution of all-order inter-
spike intervals in the output of channel C; is the same as
the autocorrelation function (AC) of the output spike train,
i.e. if 7 is an interspike interval duration or time lag, then
ACU(T) = ZS(1) * Si(t = D] * ZS;(—= 1) * Si(t — 7= D]
over all times ¢. The summary—autocorrelation or
population—interval distribution of the outputs is the sum
of the autocorrelations of each of the output channels,
SAC(7) = 2AC(7). The population—interval distribution



P.A. Cariani / Neural Networks 14 (2001) 737-753 741

INPUTS

G =

YYvVYYYYYY

Time
t

-_—
c 1y L1l P»- M =27 intervals
- | Ll RN=3r< intervals
—
o Population interval output
- M*N=2"3 = 6 7 intervals
—
YYYYYVYYY

The summary autocorrelation of
the output of the array is the product
of the autocorrelations of the inputs

arrive via
delay lines

Coincidence detectors

- OUTPUTS

B JUl il

FS.(t)
TEFNANTY

Si(t)

St S;(t- D)

convolution
time-series
term
Relative
delay D
cross-correlation
delay term
L] Before
D Ll 1NN | > } pattern
- collision
YYY | YYYY (input)
[= Higher-order After
interval } pattern
sequence collision
Y (output)

Individual output lines contain a
higher order temporal pattern
if and only if it is present
in both inputs

Fig. 2. A simple feedforward timing net. (a) General schematic of a coincidence array traversed by tapped delay lines. Each coincidence element (pyramidal
cell icons) receives two inputs. The spatial position of a coincidence element in the array determines the relative time of arrival of the two inputs (delay D).
When pulses in the two lines arrive simultaneously, an output pulse is emitted. (b) Convolution and cross-correlation functions. Summation over time in each
output channel yields the cross-correlation function, while summation over output channels for each time yields the convolution of the two inputs. The
conduction time across the array enforces a temporal contiguity window for signal comparisons. (c) The population—interval (summary autocorrelation) of the
entire output ensemble computes the product of the autocorrelations of the two input channels. (d) Intervals and higher-order interval patterns will appear in
the individual output lines only if such patterns are present in both input lines. Such higher-order patterns will appear in individual output lines even in the face

of embedded spikes that are not part of the pattern.

is the distribution of all-order interspike intervals that are
produced by the coincidence array. This is the global
temporal neural representation that was noted above to
account for many aspects of pitch and timbre, and this is
the output representation that will be utilized.

The finite spatial extent of the array enforces a temporal
contiguity constraint on the operations. If the conduction
time across the array is 20 ms, then only those portions of
the two input spike trains that are produced within the same
20 ms window will cross in the array. All interspike inter-
vals whose constituent spikes do arrive within this temporal
contiguity window will cross their counterparts in the other
set, such that if one input has M intervals of duration 7, and
the other has N such intervals, M*N 7-length intervals will
appear in the outputs [Fig. 2(c)]. The coincidence array
therefore performs a multiplication of the autocorrelations
of its inputs, taking into account the contiguity window.

A further consequence is that each interspike interval or
higher-order spike arrival pattern, such as a triplet, appear-
ing in a given output channel must also be present in each of
the two inputs [Fig. 2(d)]. The array thus functions as a

temporal sieve, passing those temporal patterns that are
common to both sets of inputs. Such complex patterns
will appear in the output of individual channels even if
they are embedded in other spikes. Thus if one wants to
compute whether a given spike train contains a pattern,
one generates the pattern of interest and feeds it into the
coincidence net. If the pattern is present in the other input,
then it will reappear in the output. This is potentially rele-
vant to temporal multiplexing by means of different inter-
leaved time patterns (e.g. Cariani, 1997a; Emmers, 1981).
Here the presence of a particular subpattern can be detected
amidst many others. This affords modes of multiplexing that
are akin to ‘code-division multiplexing’ in which different
temporal patterns asynchronously convey different signals
(Cariani, 1997a; Chung, Raymond & Lettvin, 1970). This is
somewhat different from the ‘time-division’ multiplexing
schemes that are more often proposed (Singer, 1995). The
output of such a pattern-detection process can be iterated
and/or fed back on itself such that more copies of the input
pattern are produced. This becomes a means by which parti-
cular patterns can be amplified by such systems.
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Structurally, this architecture is reminiscent of both the
Jeffress binaural localization model (Jeffress, 1948) and the
Braitenberg cerebellar timing model (Braitenberg, 1961).
The present architecture differs from these and most time-
domain auditory models in its functioning. Here, in contrast
with those models, no subsequent ‘counting’ or rate integra-
tion stage is included, since the output of this network is the
time structure it produces in its inputs rather than an across-
element activation pattern. The nature of the output signals
involved is thus very different. Timing net computations
consequently bear greater resemblance to analog signal
processing operations (Mead, 1989) that produce time-
series analog outputs than to digital signal processing algo-
rithms that produce explicit representations, be they profiles
of numerical parameter values, feature-detections, or
element activations.

3.2. Extraction of common periodicities

Coincidence arrays extract those periodicities common to
their inputs, even if their inputs have no harmonics in
common. This is useful for the extraction of common
pitches irrespective of differences in timbre (e.g. two differ-
ent musical instruments playing the same note). On longer
time scales, rhythms can be compared to detect common
underlying meters and subpatterns.

As a simple example, two amplitude modulated
tones having the same fundamental frequency (FO=
Fm = 125 Hz), but different carrier frequencies (Fc = 500 vs
1250 Hz) were synthesized (Fig. 3). Simulations were carried
out in MATLAB. Perceptually, these two signals produce the
same low pitch at their common ‘missing’ fundamental,
FO =125 Hz, despite the lack of any common partials in
their power spectra (middle plot). The signals, constructed
with a 10 kHz sampling rate, were half-wave rectified. Wave-
form maxima were replaced by rectangular pulses 300 s
wide. Sample spike trains are shown above their respective
signals. Crudely, these resemble the phase-locked responses
of auditory nerve fibers, albeit at some higher sustained firing
rates than would be seen physiologically in individual units.
In real neural systems, synchronized discharges across
several neurons would be required to support representation
of higher periodicities through a ‘volley principle’ (Wever,
1949). All-order interspike interval histograms of the 100 ms
spike trains are shown on the left. The spike trains share a
common periodicity at the fundamental period (1/
FO = 8 ms).

The pulse trains were passed through the coincidence
network. Coincidences produced by the network is shown
in the bottom left panel. The population interval distribution
was computed by summing together the all-order interspike
interval distributions of each of the output channels. Inter-
vals corresponding to the common fundamental period of
8 ms dominate the output of the network. The coincidence
array thus passes into individual output channels only those
temporal patterns that are common to the two inputs. Effec-
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Fig. 3. (a) Waveforms, power spectra, and autocorrelation functions for four
vowels. The vowel set consists of combinations of two different fundamen-
tal frequencies (FO = 100, 125 Hz) and two formant structures. Horizontal
arrows above waveforms and vertical lines in autocorrelations indicate
fundamental periods (1/F0 =8, 10 ms), which correspond to voice pitch
periods. Shaded bars indicate periodicities associated with formant struc-
ture that give rise to differences in vowel quality (timbre). (b) Population
autocorrelations of the output of the coincidence array for all vowel pairs.

tively, the network extracts the common fundamental peri-
odicity without ever making any sort of explicit estimation
of the fundamentals of the two input signals.

Coincidence nets can also extract common periodicities
that are associated with different timbres or vowel qualities
(Cariani, 2001a). This is useful for the extraction of common
pitches irrespective of differences in timbre (e.g. the same
musical instrument playing different notes, or two different
people speaking the same vowel). Four synthetic vowels
consisting of combinations of two fundamental frequencies
and two spectral envelopes (formant combinations) were
constructed [Fig. 4(a)]. These particular synthetic vowels
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Fig. 4. Extraction of a common fundamental frequency by a coincidence array. (a) and (c) Pulse trains derived from maxima of two waveforms. Pulses are
300 s wide. (b) and (d) Waveforms of two amplitude-modulated (AM) tones with different carriers (Fc = 500, 1250 Hz) but same modulation frequency
(Fm =125 Hz). The AM tones have no harmonics in common, but have a common fundamental frequency that produces the same low pitch at their ‘missing
fundamental’ (FO = Fm = 125Hz). (e) Output of a coincidence array in response to presentation of the two pulse trains. The effective coincidence window was
600 ws. The output of the coincidence array is shown as a function of the relative delay channel (ordinate) and time (abcissa). (f) and (g) The all-order
interspike interval distributions of the input pulse trains. (h) The population—interval distribution of the output of the coincidence array.

most closely correspond to the vowels [ae] (a as in hat) and
[er] (er as in herd). Waveforms, power spectra, and autocor-
relations of the vowels are shown. The signal-property corre-
lates of the voice pitches that are heard are (1) the period of
temporal pattern in their waveform, (2) the harmonic spacings
in their spectra, and (3) the positions of major peaks in their
autocorrelation functions (vertical lines). The correlates of
their vowel quality or timbre that distinguish them as different
phonetic-types are (1) the internal structure of the repeating
waveform pattern, (2) the shape of their spectral envelopes,
and (3) patterns of short intervals (up to half the fundamental

period) in their autocorrelations (bars under the plots).
Phonetic identities of different vowels can thus be distin-
guished on the basis of waveforms, power spectra, or auto-
correlations. Population—interval distributions at the level of
the auditory nerve provide effective autocorrelation-like
neural representations of vowel identity (Cariani, 1995,
1999a; Cariani & Delgutte, 1993, 1994; Cariani, Delgutte &
Tramo, 1997; Lyon & Shamma, 1996; Palmer, 1992) whose
features closely follow phonetic boundaries (Hirahara,
Cariani & Delgutte, 1996a,b). The positions of minor peaks
in population—interval distributions estimated from neural
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Fig. 5. Fusion and separation of patterns by relative arrival time disparities in a feedforward timing net. Two temporal patterns of pulses are shown that have
different inter-channel arrival times, such that the temporal disparity between the two patterns is different in each channel. As a consequence of this difference,
the two patterns cross their counterparts at different relative delays and are propagated by two different delay channels.

data mirror those in the stimulus autocorrelation function. For
example, the patterns of minor interval peaks in the popula-
tion—interval distribution in Fig. 1 are associated with the
formant frequency of the single-formant vowel stimulus.

Thus far, we have dealt with binary-valued pulsatile
signals. Operations on binary pulse trains can be scaled up
to handle positive-real-valued signals by assuming many of
the same operations are carried out in parallel using spike
probabilities amongst many neural elements, e.g. peristimu-
lus time (PST) histograms. For example, if a stimulus gener-
ates 50 spikes at time t amongst 100 neural elements, then
50 spike trains out of 100 in a parallel array will have a spike
at time ¢. If a second stimulus generates 20 spikes out of 100
neural elements in a second population, then 20 spikes will
occur at time ¢ for that population. If all 10,000 pairwise
combinations of spike trains generated by the two
populations are fed into coincidence detectors, then
20 * 50 = 1000 coincidences will be produced. The prob-
ability of a coincidence in any one pair is 1000/10 000, or
0.1. This is equal to product of the respective probabilities
for S()=1 and S(r)=1, ie. the expected relative
frequency of coincidences in the ensemble at time ¢ is
0.5%0.2=0.1.

All four synthetic vowels were passed pairwise through a
coincidence net. The summary autocorrelation of the output
of the net for each pair is shown in [Fig. 4(b)]. Those vowel
pairs that had common fundamentals (the same voice
pitches: ae-100, er-100 and ae-125, er-125), when passed
through the network produced summary autocorrelations
with major peaks at their common fundamental periods
(their common pitch). Those vowel pairs that had common
formant-structure (the same vowel but different voice pitch:
ae-100, ae-125 and er-100, er-125), produced patterns of
short intervals that corresponded to their respective formant
structures. Those vowel pairs that had neither common
fundamental frequency nor common formant structure
(different voice pitch and different timbres: ae-100, er-125
and er-100, ae-125), produced only small peaks associated
with overlapping subharmonics. Thus the same mechanism
handles both pitch and timbre, extracting similarities of

pitch irrespective of timbre and similarities of timbre irre-
spective of pitch.

Comparable results were also obtained using multichannel
auditory nerve simulations that incorporated bandpass filter-
ing, half-wave rectification, low pass filtering, and rate
compression (Cariani, 2000). The results are similar because
phase-locking produces spike trains whose time structure
resembles the waveform and whose autocorrelations (all-
order interval histograms) resemble the positive portions of
the stimulus autocorrelation functions. In simulations and in
observed neural population responses, nonlinear processes,
such as floor and saturation of discharge rates, alter relative
heights of interval peaks without modifying the periodicities
that the peaks represent (Cariani, 1999a; Cariani et al., 1997).
The functional effects of nonlinearities thus depend on the
nature of the neural codes involved. Interspike interval
codes for representation of periodicity are highly resilient to
the effects of such nonlinearities.

3.3. Separation of auditory objects by means of time-of-
arrival disparities

Coincidence networks also can play a role in building up
fused images and separating them on the basis of time-of-
arrival disparities (Fig. 5). This was originally suggested by
Colin Cherry’s model for binaural fusion (Cherry, 1961),
which combined autocorrelation and cross-correlation
operations. When two low-frequency tones are presented
with different interaural time disparities (ITD), they are
heard at different azimuthal locations. Consider, however,
the behavior of a coincidence array when two different pulse
sequences (Patterns 1 and 2) with two different temporal
disparities are presented to the network. Because of the
temporal disparity between patterns, each pattern meets its
counterpart at a different relative delay. Consequently, the
two temporal patterns are segregated into two different
output channels. This kind of mechanism works for both
interaural time disparities and onset time disparities, albeit
in different delay regimes. Both cues play a role in the
perceptual fusion of sounds.
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Fig. 6. Behavior of a simple recurrent timing net for periodic pulse train patterns. Left, recurrent timing net consisting of an array of coincidence detectors with
associated loops having a range of recurrence times. Right, output of the coincidence array, arranged by the length of delay loop (ordinate) and time (abcissa).
Periodic patterns invariably build up in the delay loop whose recurrence time equals the period of the pattern (from Cariani, 2001a).

In audition, interaural disparities are interpreted as
azimuthal locations. In vision, depth cues are created by
both binocular spatial disparities and temporal disparities
(e.g. the Pulfrich effect). It is conceivable that such temporal
processing could be applied to problems of stereopsis in
binocular vision. Application to binocular fusion and
depth perception would require a conversion from spatial
to temporal pattern, i.e. a scanning process (Pabst, Reit-
boeck & Eckhorn, 1989; Reitboeck, Pabst & Eckhorn,
1988). Temporal correlations between retinal channels
might be obtained from horizontal image motion coupled
with phase-locking of retinal elements to edges. Provided
with such temporal substrates, a simple coincidence net
would fuse and segregate binocular images in a manner
similar to the processing of binaural images.

3.4. General implications

An important general property of these feedforward
timing networks is that their functioning depends neither
on particular interconnections nor on which particular
elements are activated. As long as there are rich sets of
delays, for purposes of pattern extraction, these networks
are indifferent as to which particular coincidence elements
are activated (for purposes of localization, as in Fig. 5,
coincidence arrays do need to be ordered, and on which
coincidence channel the output patterns appear does
matter). Populations of neurons connected by means of
these coincidence nets therefore could potentially process
information asynchronously, in mass-statistical fashion.
Since they operate on interval statistics that do not depend
on the particular transmission channels involved, provided
there are many relative delays, such networks may obviate
the need for precise point-to-point connectivities. This in
turn may permit information to be broadcast en masse, with-
out having to guarantee in advance a coherent constellation

of path- and element-specific connection weights and
conduction times.

4. Recurrent timing nets

The comparisons outlined above require the two sets of
inputs to be simultaneously present in the network in order to
beat them together. Consequently, for delayed matching
tasks, timing information must be stored and retrieved. The
simplest temporal storage strategy is to allow the signals
themselves circulate in a reverberating conduction loop, as
temporal memory traces. Incoming time patterns can then be
compared with circulating ones using the kinds of correla-
tional operations outlined above. Stimulus matching in such
a system would entail maximizing the output of the whole
coincidence array. In addition percepts build up over time,
with previous patterns dynamically creating sets of percep-
tual expectations that can either be confirmed and built up or
violated. Periodic signals, such as rhythms, thus build up
their own temporal expectations. These recurrent timing
networks were inspired in different ways by the stabilized
auditory images of (Patterson, Allerhand & Giguere, 1995),
the neural loop model of (Thatcher & John, 1977), the adap-
tive timing nets proposed by (MacKay, 1962), the adaptive
resonance circuits of (Grossberg, 1988), and the psychology
of temporal expectation (Jones, 1976; Miller & Barnet,
1993). With these ideas in mind, computational properties
of simple recurrent timing nets were explored.

4.1. Buildup of periodic time patterns

The simple recurrent timing network in Fig. 6 cross-
correlates incoming time patterns with previous, circulat-
ing ones in order to build up those temporal patterns that
recur. As a first step, pulse trains with repeated, randomly
selected pulse patterns (e.g. 100101011-100101011—
100101011...) were passed through the network. The
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Fig. 7. Separation of auditory objects through temporal pattern coherence. Top waveform plots. Two synthetic vowels [ae] and [er] with different fundamental
frequencies 100 and 125 Hz were summed together to form a double vowel. The composite waveform was half-wave rectified and presented to a recurrent
timing net. Right top, the output of the recurrent coincidence array shows the buildup of the two patterns in the delay channels (A and B) whose recurrence
times equal their respective periods. (a) Top, waveform of the signal circulating in the 10 ms delay loop at 60—80 ms after the stimulus onset. Middle,
corresponding input waveform for the same time period. Bottom, waveform of the vowel [ae] that has a fundamental period of 10 ms for the same period. (b)

As with (a), except that the vowel [er] is plotted.

same input signal, here a pulse train, is presented to each
of the coincidence elements in the array. For each time
step, the incoming unit-amplitude pulse train is multiplied
by the variable-amplitude train arriving in the delay loop.
In the absence of pulses arriving through the delay loop,
the incoming unit-amplitude pattern is fed into the loop.
Coincidences between pulses increase the amplitudes of
pulses that propagated back through the loop by 5%.
The plot shows the signals produced by the coincidence
elements as a function of their loop delay (ordinate) and time
(abcissa), with signal strength being indicated as shades of
gray (black is maximal, white is zero). Here the pattern-
period is 11 timesteps, and the delay loop that builds up the
strongest signal has a recurrence time of 11 timesteps. Irre-
spective of the pattern that is repeated, periodical pulse
patterns invariably build up fastest in the delay loop whose
recurrence time matches their repetition time. Thus, recur-
rent time patterns are repeatedly correlated with themselves
to build up to detection thresholds. In effect, the cross-corre-
lation loops dynamically create matched filters from repeat-

ing temporal patterns in the stimulus. In this manner,
temporal-pattern invariances are enhanced relative to uncor-
related patterns. In essence, the network functions as a
pattern-amplifier. Related kinds of correlation-based strate-
gies were used in the 1950s to detect periodic signals in noise
(Lange, 1967; Meyer-Eppler, 1953), in situations where the
period of the target signal was known a priori. This network
implements such periodicity-amplification and detection
strategies in a more systematic and general way.

4.2. Formation and separation of auditory objects through
temporal coherence

When two repeating temporal patterns each with its own
repetition period are summed and presented to a recurrent
timing net, the two patterns build up in the two different
delay loops that have the corresponding recurrence times.
Fig. 7 shows the response of the network to a concurrent
double vowel, whose constituents are the synthetic vowels
[ae] and [er] which respectively have fundamental periods
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of 100 and 125 Hz. The two constituent vowels have wave-
form patterns that repeat every 10 and 8 ms (top plots). The
double vowel waveform was constructed by summing
together the waveforms of the two constituent vowels.
The waveform was then half-wave rectified and presented,
as before, to all coincidence elements in the network.

One drawback of the simple 5% multiplicative rule of the
last example is that it results in geometrically increasing
signals, which over-emphasize waveform peaks. In this
case a buildup rule that saturates more gracefully was
chosen. Here the output of a given coincidence unit is the
minimum of direct and circulating inputs plus some fraction
of their difference. The rule that describes the coincidence
Operation was Ak(t) = min(Sdirect(t)’ B * Sdirecl(t) * Sloop(t))a
where A () is the output of coincidence element k associated
with delay loop of recurrence time Dy, B is the adjustment/
buildup rate factor (0.1), Sgirei(?) is the incoming direct input
signal, and Sjo0p(f) is the incoming signal circulating in the
loop.

The behavior of the network is shown in the plot to the
right of the waveforms. Within 2-3 periods, waveforms
begin to build up in the two delay loops whose recurrence
times equal the vowel periods, i.e. 10 ms (A) and 8 ms (B).
The waveforms in the respective loops come to resemble the
individual vowel constituents. This can be seen in the
bottom plots (A and B). The top plots show the waveforms
circulating in the two delay loops for the peristimulus time
of 60-80 ms. In the 10 ms channel, peaks separated by
10 ms are seen; in the 8 ms channel, peaks are separated
by 8 ms. The middle plots show the input to the network
for the same time segment, and it can be seen that the wave-
forms in the two delay loops amplify different peaks in the
composite double vowel input waveform. The bottom peaks
show the constituent vowel waveforms for the same time
period. Comparison with the loop waveforms indicates both
common major and minor peaks.

This single-channel network demonstrates how multiple
auditory objects with different repetition periods (i.e. funda-
mental periods, rhythms) can be segregated into different
delay-paths. This is accomplished without any explicit esti-
mation of the respective fundamentals and without the need
to bind together particular channels or features to form each
object. Building up and separating objects by temporal
pattern coherences constitutes an extremely general and
very powerful scene analysis strategy that potentially can
be applied to any sensory system that has neural responses
that are temporally correlated with the stimulus waveform.

4.3. Multichannel recurrent timing networks for separating
and identifying concurrent (double) vowels

Most recently, recurrent timing networks have been
scaled up to handle the multichannel temporal discharge
patterns produced by a simulated auditory nerve array
(Fig. 8). The network consisted of a simplified auditory

nerve array front-end, and a full set of delay loops for
each frequency channel.

The auditory nerve simulation incorporated bandpass
filtering, half-wave rectification, low pass (synaptic) filter-
ing, and rate compression. Twelve frequency channels were
simulated with center frequencies spaced at equal logarith-
mic intervals from 125-4000 Hz. Filter and rate-level para-
meters were chosen that qualitatively replicated the
responses of auditory nerve fibers to different frequencies
presented at moderate levels (60—80 dB SPL). Filters were
fitted to approximate the rate responses of auditory nerve
fibers (ANFs) as a function of tone frequency at a constant
level of 60 dB SPL (Rose, Hind, Brugge & Anderson,
1971). Filtered signals were half-wave rectified and
convolved with a square window low pass filter (i.e. a
200 ws moving average) that mimics the decline in phase-
locking with frequency. An array of simulated peristimulus
time histograms, called a PST neurogram, was thus gener-
ated. The PST pattern for each frequency channel was then
fed to a set of 150 delay loops ranging from 0—15 ms recur-
rence time. The modified buildup rule that was described
above was used to build up patterns in the loops.

A set of six concurrent, synthetic five-formant double
vowels previously used in human psychophysics experi-
ments (Assmann & Summerfield, 1989, 1990; Summerfield
& Assmann, 1991) was presented to the whole network.
Pairs of vowels [ae], [ah], [er], [ee], [o0], with same and
different fundamental frequencies (0, 0.5, 1, 4 semitones
apart, i.e. 0, 3, 6, and 24% difference in frequency) were
used. Double vowels were 200 ms long. The responses to
these double vowels were simulated, and the resulting PST
discharge patterns were then presented to the recurrent
timing nets. The outputs of the timing nets were then visua-
lized and analyzed in several ways.

The response of the network to the double vowel [ae]—
[er], with fundamentals of 100 and 106 Hz (one semitone
apart) respectively, is shown in detail in Fig. 9(a)—(e). The
first 50 ms of the input neurogram for this vowel is shown in
Fig. 8. The network consists of 12 frequency channels with
150 delay loops per channel. The response is therefore
described in three dimensions: frequency, delay loop, and
time.

Panel A shows the average response of the network as a
function of frequency and time, i.e. signals in all delay loops
for a given frequency channel are summed together. Since
the vowels excite overlapping frequency regions and the
filters are relatively broad, there is a great deal of spectral
overlap that provides few purely spectral cues for
segregation.

Panel B shows the average response of the network as a
function of loop delay and time. Here the signals from all
loops across all frequencies having the same recurrence
times have been summed together. The emergence of strong
signals in loops with recurrence times of 10 and 9.4 ms,
which correspond to the periods of the two vowels can be
seen in the plot (gray arrows). Panel C shows the mean
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Fig. 8. Multichannel recurrent timing net. Schematic for multichannel, frequency-based recurrent timing net. Top left plots show stages in the auditory nerve
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signal value as a function of loop delay for three different
time periods, i.e. a vertical cross section of the plot in panel
B. In initial vowel periods, one peak is seen, followed by
rapid separation in subsequent periods. The two peaks are at
9.4 ms (106 Hz fundamental of er) and 10 ms (100 Hz
fundamental of ae). The response patterns for each 9.4 ms
delay loop for each of the 12 center frequencies (loop neuro-
gram) is shown in the middle plots, and the patterns for
10 ms delays are shown in the right hand plots. At the
beginning, these are almost the same, but by 80—100 ms
they are clearly different.

Panel D shows the separation of signals as a function of
fundamental separation and buildup time. Fundamental
separations of less than a semitone (6%) result in fused
peaks, while separations of a semitone or more result in
separation of signals into different delay channels. One
wants to assess how similar the separated patterns are to
those of the single vowels, and whether this similarity
increases with their segregation into multiple delay chan-
nels. One means of doing this is to compile the population—
interval distributions of the loop-neurograms and to

compute their correlations with the population—interval
distributions that are produced by the single vowels (Fig.
8, bottom). Panel E shows the population—interval distribu-
tions of the loop neurograms for the double vowel ae-er for
different fundamental separations (0—4 semitones). As
fundamental separations move from O to 4 semitones, corre-
lations increase from 0.65 and 0.42 to 0.97. The greatest
increase is between O and 1 semitone. Panel F shows the
correlations of the signals in the dominant delay loops to
those associated with their respective single vowels. In all
cases, the general pattern of rapid improvement from 0-1
semitone followed by plateau from 1-4 semitones was
observed. The high final correlations indicate that such
networks effectively separate out the constituent vowels.
The network behaves qualitatively like human perception.
When fundamentals are the same, the vowels are fused
together, and their individual timbres are hard to hear out.
When they are separated by a semitone (AFO = 6%) or more,
they are heard as two separate auditory objects, and are iden-
tified with somewhat higher accuracy. When human listeners
are asked to identify the two constituents of double vowels,
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they correctly identify 45-65% of double vowels in sets
correctly when the fundamentals are the same (panel G).
They improve their identifications by 15-20% when the
vowels are separated by a semitone or more. Thus far, a
correlation-based decision rule has not been implemented
that would allow more direct comparison between the
network’s error rates and those of human listeners. One possi-
bility would be to examine all of the correlations between a
given loop-pattern and prospective single vowel patterns, and
to choose to identify the single vowel with the highest corre-
lation. Similar correlation-based decision strategies were
used successfully in the past to identify double vowels
from neural ANF population—interval distributions (Cariani
& Delgutte, 1993, 1994).

The model demonstrates that recurrent networks can be
scaled up to handle multichannel input data, and that multi-
ple auditory objects can be effectively separated using these
techniques. Most existing strategies for separating sounds
on the basis of fundamental frequency attempt to group
frequency channels together by finding FO-related features
in each channel, e.g. (Meddis & Hewitt, 1992). The present
model demonstrates an alternate strategy for auditory object
separation that uses no explicit feature detection (i.e. FO-
detectors). Instead, the delay loops amplify temporal
pattern-invariances that separate auditory objects on the
basis of their temporal patterns. The network also demon-
strates the buildup of auditory images in a manner not unlike
Patterson’s strobed temporal integration architecture
(Patterson et al., 1995). Both build up auditory images by
comparing a signal with its immediate past. While Patter-
son’s model uses an onset-triggered comparison process,
these recurrent timing nets continuously compute with all
loop delays, which yields a more systematic analysis of the
signal. In both architectures, object formation comes prior to
analysis of auditory qualities (pitch, timbre) rather than
being the result of such analyses. Finally, recurrent timing
nets demonstrate how purely temporal representations and
computations can effect separation and identification of
auditory objects.

5. Future work

The simple timing nets presented here are certainly quite
rudimentary, and there are many directions that timing net
models and applications could pursue. The most obvious
potential applications involve enhancement of periodic
sounds in noise (voiced portions of speech in background
noise) and separation of multiple periodic sounds, such as
different speakers or musical instruments. We have also
begun to examine possible applications of recurrent timing
nets to the buildup of rhythmic expectations (Cariani,
1999a, 2001c¢).

Feedforward networks are useful in extracting which
pitch- and timbre-related periodicities are common to their
two inputs. This may be useful in determining speaker iden-

tity, which involves, among other factors, voice pitch
comparisons (common fundamental frequency). Such
mechanisms may also be useful in forming phonetic equiva-
lence-classes based on vowel identity (timbre, largely irre-
spective of voice pitch).

At present timing nets function as broad heuristics for
how the auditory system might process temporal patterns
to form auditory objects and temporal expectations.
Hypothetical grounding of these networks in specific neural
substrates are beginning to be contemplated. The most
obvious locus of feedforward timing nets would lie in the
binaural cross-correlation operations situated in the nucleus
of the medial superior olive (MSO). The idea for feedfor-
ward timing nets grew out of consideration of whether
temporal patterns of binaural coincidences might be
preserved in the output of the MSO, such that they could
subserve perception of binaurally-created pitches (Akeroyd
& Summerfield, 1999; Cariani, 1996, 2001a). More gener-
ally, Braitenberg (1961) proposed cortically-organized
architectures for temporal processing in which horizontal
fiber systems function as tapped delay lines and Purkinje/
pyramidal cells function as coincidence detectors. There has
been a running debate concerning the nature of cortical
pyramidal cells, whether they are to be seen as rate integra-
tors or coincidence detectors (Abeles, 1982). If pyramidal
cells behave more like coincidence detectors, or that tempo-
rally-correlated activations of specific subsets of synapses
are capable of initiating spikes, then fine timing issues rise
to the fore in cortical structures (Abeles, Prut, Bergman &
Vaadia, 1994), and notions of mass-statistical temporal
processing in cortical coincidence arrays no longer appear
so far fetched.

Recurrent pathways are the rule rather than the exception
in the brain. Recurrent timing nets could potentially be
realized via interactions between ascending and descending
fiber systems at the level of colliculus and thalamus. Even at
the level of the auditory thalamus, there exists enough
phase-locked information to represent periodicities up to
2-3 kHz (de Ribaupierre, 1997), so that operations on inter-
spike intervals at those stations are not completely out of the
question (Cariani, 1999a). Thus far, there exist no satisfac-
tory neurally-grounded accounts of how or where auditory
images are formed and compared.

Adaptive resonance theory may provide a guide (Gross-
berg, 1988, 1995). Recurrent timing networks can be seen as
temporal adaptive resonance networks in which patterns are
temporally rather than spatially coded, and processing
occurs in the time-domain. In both adaptive resonance and
recurrent timing networks, the interplay of incoming
sensory data and central circulating patterns results in
bottom-up/top-down codeterminations. Although the timing
nets presented here dynamically form patterns rather than
using stored pattern archetypes to recognize incoming ones,
central neural assemblies could emit temporal patterns that
facilitate their buildup if they are present in incoming
sensory data. Thus far, recurrent timing nets do not exploit
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mismatches between incoming patterns and network
expectations as they do in adaptive resonance circuits.
Nevertheless, one can foresee incorporation of temporally-
precise inhibitory interactions that implement anti-coinci-
dence operations that make detections of such mismatches
possible in timing nets as well. One would then have both
coincidence and anticoincidence operations—correlation
and cancellation (cf. Seneff’s (1985, 1988) Generalized
Synchrony Detector that computes the ratio of waveform
sums and differences). Finally, adaptive resonance networks
are adaptive—they alter their internal structure contingent
on experience in order to improve performance—while the
timing nets thus far developed are not. Here, too, straight-
forward improvements can be made. Hebbian rules that
operate on temporal correlations and anticorrelations, in
the short-term as well as the long term can be incorporated.
Perhaps the most exciting prospect is that delay loops could
be formed on the fly even in randomly-connected nets by
short-term facilitations borne by temporal correlations. The
time structure of a incoming signal would dynamically orga-
nize central neural circuits so as to propagate and build up
stable, reverberating patterns.

6. Conclusions

Neural timing nets are a class of neural networks that
operate on temporally-structured spike patterns to produce
other temporally-structured patterns. Neural timing nets
implement time-domain operations on spike trains that are
similar in style to analog signal processing.

A simple, feedforward coincidence array can operate on
two sets of temporally-coded inputs in order to extract
common periodicities underlying common pitches and
timbres. Common pitch can thus be recognized independent
of timbre, and common timbre can be recognized indepen-
dent of pitch. This has the practical value of allowing one to
extract common fundamentals (perceptually, pitches) even
if there are no overlapping partials. Further, both operations
can be realized using the same, simple mechanism that does
not require explicit prior explicit estimation of either
attribute.

Feedforward timing nets permit time patterns to be simply
separated on the basis of differences in time-of-arrival. This
provides an elegant mechanism for binaural separation and
fusion.

Recurrent timing networks can build up periodic
temporal patterns in their inputs and separate multiple audi-
tory objects on the basis of differences in fundamental
frequency. We have shown how such networks can build
up and separate double vowels into their constituent wave-
forms. Recurrent timing nets implement alternative, global
relational strategies for scene analysis that do not rely on
binding together ensembles of local features into stable
objects. Instead, such networks provide general-purpose
pattern recognizers that form objects by fusing invariant

temporal patterns in their inputs. Many other possible
computational properties and uses of neural timing nets
remain to be explored.
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