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ABSTRACT

In this study we describe two techniques for handling convolutional distortion with ‘missing data’

speech recognition using spectral features. The missing data approach to automatic speech recognition

(ASR) is motivated by a model of human speech perception, and involves the modification of a hidden

Markov model (HMM) classifier to deal with missing or unreliable features. Although the missing data

paradigm was proposed as a means of handling additive noise in ASR, we demonstrate that it can also

be effective in dealing with convolutional distortion. Firstly, we propose a normalisation technique for

handling spectral distortions and changes of input level (possibly in the presence of additive noise). The

technique computes a normalising factor only from the most intense regions of the speech spectrum,

which are likely to remain intact across various noise conditions. We show that the proposed

normalisation method improves performance compared to a conventional missing data approach with

spectrally distorted and noise contaminated speech, and in conditions where the sound level of the

acoustic input varies. Secondly, we propose a method for handling reverberated speech which attempts

to identify time-frequency regions that are not badly contaminated by reverberation and have strong

speech energy. This is achieved by using modulation filtering to identify ‘reliable’ regions of the speech

spectrum. We demonstrate that our approach improves recognition performance in cases where

reverberation time T60 varies from 0.7 sec. to 1.5 sec., compared to a baseline system which uses

acoustic features derived from perceptual linear prediction and the modulation filtered spectrogram.

Keywords: speech recognition, missing data, spectral distortion, spectral normalisation, reverberation.
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1. INTRODUCTION

Although much research effort has been expended on the development of automatic speech

recognition (ASR) systems, their performance still remains far from that of human listeners. In

particular, human speech perception is robust when speech is corrupted by noise or by other

environmental interference, such as reverberation or a poor transmission line (for example, see

Assmann and Summerfield, 2003; Nabelek and Robinson, 1982). In contrast, ASR performance falls

dramatically in such conditions (for a comparative review of human and automatic speech recognition

performance in noise see Lippmann, 1997). As several researchers have observed (e.g., Cookeet al.,

2001; Hermansky 1998; Lippmann, 1997), the current limitations of ASR systems might reflect our

limited understanding of human speech perception, and especially our inadequate technological

replication of the underlying processes.

The robustness of human speech perception can be attributed to two main factors. First, listeners are

able to segregate complex acoustic mixtures in order to extract a description of a target sound source

(such as the voice of a speaker). Bregman (1990) describes this process as ‘auditory scene analysis’.

Secondly, human speech perception is robust even when speech is partly masked by noise, or when parts

of the acoustic spectrum are removed altogether (for example, by a bandlimited communications

channel). Cookeet al. (2001) have interpreted this ability in terms of a ‘missing data’ model of speech

recognition, and have adapted a hidden Markov model (HMM) classifier to deal with missing or

unreliable features. In their system, a time-frequency ‘mask’ is employed to indicate whether acoustic

features are reliable or corrupted; according to this division the features are treated differently by the

recogniser. Typically, the missing data mask is derived from auditory-motivated processing, such as

pitch analysis (Barkeret al., 2001a; Brownet al., 2001) or binaural spatial processing (Palomäkiet al.,

2001; in press). Alternatively, the mask can be set according to local estimates of the signal-to-noise

ratio (SNR) (Cookeet al., 2001).

The missing data paradigm was conceived by Cookeet al. as a means of dealing withadditive noise

in ASR. As a result, little consideration has been given to the ability of missing data ASR systems to

handle interference caused by the interaction of a target sound with its environment (such as a
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transmission line, audio equipment or reverberant space). In terms of signal theory this is regarded as

convolutional interference. In this paper, we propose a number of modifications to a missing data ASR

system which allow it to perform robustly in the presence of convolutional noise.

A convolutional interference can be characterised by the impulse response of the corresponding

system. If the impulse response is relatively short compared to the wavelength of the speech sound, this

mainly causes spectral alteration, since convolution in the time domain is equivalent to multiplication

in the frequency domain. If, however, the impulse response is relatively long (which is true in the case

of reverberation) the interaction is of a different nature. A typical room impulse response consists of

sparse early reflections followed by dense late reverberation (higher order reflections), which forms the

exponentially decaying tail of the response. The sparse early reflections are highly correlated with the

speech signal and actually contribute usefully to speech intelligibility by increasing the loudness of the

speech. However, the dense late reverberation is poorly correlated with the original speech signal and

therefore behaves more like additive noise. Reverberation also alters the spectral shaping of the speech

signal, because different vibrational modes of the room emphasize some frequencies more than the

others. Further details of the effect of room acoustics on speech intelligibility can be found in Bradley

(1986) and Houtgast and Steeneken (1985).

The conventional way of tackling convolutional interference in ASR has been to use cepstral

encoding, and to employ cepstral mean subtraction to remove the spectral distortion. Two common

examples of cepstral encoding are mel-frequency cepstral coefficients (MFCC) (Davis and

Mermelstein, 1980) and cepstral features obtained by perceptual linear prediction (PLP) (Hermansky,

1990). Interestingly, both of these approaches are loosely based on known mechanisms of auditory

frequency encoding. However, they have been found to perform inadequately with reverberated speech

(Hermansky, 1990; Kingsbury, 1998; Kingsbury et al., 1998). Reverberation can also be handled via

blind source separation (BSS) using a microphone array, or via blind deconvolution or dereverberation

(for an overview see Omologo et al., 1998). In such approaches, the aim is to enhance subjective speech

quality rather than to find a robust acoustic encoding. BSS gives good dereverberation performance, but
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at least two microphone signals are needed to process a single speech source (for an overview of BSS

and independent component analysis see Hyvärinenet al., 2001).

 Kingsbury and his colleagues (Kingsbury, 1998; Kingsburyet al., 1998) have reported that a

modulation filtered spectral representation, the modulation spectrogram (MSG), can improve ASR

performance with reverberated speech. Spectral bands are processed by a modulation filter, which

emphasizes the strongest speech modulations and effectively removes reverberant or noisy regions that

are not modulated in the same way as speech signals. This approach is consistent with studies that

demonstrate the importance of low frequency modulations in human speech recognition (Houtgast and

Steeneken, 1985; Drullmanet al., 1994).

In this study we address the problem of handling convolutional distortion in a missing data ASR

system which uses spectral speech features. Two conditions are considered; one in which speech is

subject to spectral distortion and additive noise, and another in which speech is reverberated. In the first

case, we derive a missing data mask from estimates of the SNR in local time-frequency regions, and

employ spectral subtraction to remove the noise background. Furthermore, we introduce a new method

for normalising spectral features that is compatible with the missing data ASR framework. In

reverberant conditions, a modulation filtering scheme is used to generate the missing data mask. This

approach exploits temporal modulations of speech in order to find spectro-temporal regions which are

not severely contaminated by reverberation.

The current study extends our previous work in several important respects. A related scheme for

spectral normalisation was presented in (Palomäkiet al., in press), but it was applied only to a very

specific purpose (speech recognition using a binaural hearing model). Here, we develop and evaluate

the normalisation scheme more thoroughly, and evaluate it on a more general speech recognition task

with different types of spectral distortion. Our early work on modulation mask estimation (Palomäkiet

al., 2002) suffered from the drawback that the algorithm needed to be hand-tuned to each different

reverberation condition. This problem has now been addressed by an adaptive scheme, in which the

parameters of the algorithm are set according to an estimate of the degree of reverberation present in the

signal. This allows the same system to be used in a wide range of reverberation conditions without the
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need for hand-tuning. Finally, in (Palomäkiet al., 2002) the system was evaluated on a limited number

of simulated room impulse responses (RIRs), whereas here we use real RIRs which vary in their T60

reverberation time between 0.7 sec. and 1.5 sec. The results obtained with our new method are also

compared against Kingsbury’s (1998) recogniser for reverberated speech, which uses MSG and PLP

features.

Section 2 of the paper describes the overall architecture of the missing data ASR system and the

acoustic features used. In Section 3, we present a processing pathway that is optimised for conditions in

which speech is subject to spectral distortion and additive noise. A processing pathway for reverberant

conditions is described in Section 4. The system is evaluated under a number of noise conditions in

Section 5, and compared against a baseline approach. We conclude with a discussion in Section 6.

2. SPEECH RECOGNISER

The missing data speech recognition system is shown schematically in Figure 1. In this section we

describe the front-end processing, which extracts spectral features using an auditory model, and explain

the missing data ASR approach.

– Figure 1 about here –

2.1. Acoustic features

Typically, HMM-based ASR systems model each state as a mixture of Gaussians with diagonal

covariance, and therefore assume that the acoustic features are statistically independent. Cepstral

features are widely used because they meet this requirement, since they are an approximately orthogonal

encoding of spectral shape (see Gold and Morgan (2000) for a review). Additionally, cepstral mean

subtraction can be employed to deal with spectral distortion (Atal, 1974).

However, in the context of missing data ASR there are good reasons for using an acoustic encoding

based on spectral features, rather than cepstral coefficients. Firstly, noise that is local in frequency only

disrupts local spectral features, whereas it is distributed over a wide range of features in the cepstral

domain (Morris, 2002; see also Droppoet al., 2003). Furthermore, mask estimation techniques which
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are based on our understanding of human perception are most naturally implemented in terms of spectral

features, because the peripheral auditory system decomposes sound into frequency bands (Moore,

2003).

– Figure 2 about here –

Here, we derive spectral acoustic features for the recogniser from a simple model of peripheral

auditory processing. Cochlear frequency analysis is simulated by a bank of 32 bandpass ‘gammatone’

filters, with centre frequencies spaced on the equivalent rectangular bandwidth (ERB) scale between 50

Hz and 3850 Hz (for details see Cooke, 1993; Brown and Cooke, 1994). The instantaneous Hilbert

envelope is computed at the output of each filter. This is smoothed by a first-order low-pass filter with

an 8 ms time constant, sampled at 10 ms intervals, and finally cube root compressed to give a crude

simulation of auditory nerve firing rate (a ‘rate map’; see Figure 2 for an example). Here, we use the

notation  to denote the value of the rate map for auditory filter channelj at time framei.

2.2. Missing data speech recognition

Automatic speech recognition is a classification problem in which an observed acoustic vectorY

must be assigned to a class of speech soundC. Using Bayes’ rule, the posterior probabilityf(C|Y) can

be expressed as the product of a likelihoodf(Y|C) and a priorf(C), and hence classification can be

performed by finding the classC which maximisesf(Y|C)f(C). However, when noise is present some

elements of the acoustic feature vectorY may be unreliable or missing, and it is not possible to compute

f(Y|C) in the usual manner. One solution to this problem is the ‘missing data’ technique (Cookeet al.,

2001). This addresses the problem by partitioningY into reliable and unreliable components,Yr andYu.

The reliable componentsYr are directly available to the classifier in the form of the marginal distribution

f(Yr|C). Additionally, the true value of the unreliable featuresYu can often be assumed to lie within a

certain range. This provides an additional constraint by bounding the range of possible values over

which the unreliable features are integrated. This technique is known as ‘bounded marginalisation’

(Cookeet al., 2001).

y i j,( )



HANDLING CONVOLUTIONAL DISTORTION IN MISSINGDATA SPEECHRECOGNITION

Page 8

Here, we use bounded marginalisation whereY is a vector of simulated auditory nerve firing rates;

thus the lower bound ofYu is zero (since a firing rate cannot be negative) and the upper bound is the

observed firing rate. In practice, a ‘mask’m(i,j) is used to indicate whether the acoustic evidence in each

time-frequency region is reliable. In the simplest case, mask values are taken to be 0 or 1 so that a binary

judgement is made as to whether data is reliable or unreliable. Alternatively, the mask elements may be

set to real values in the range [0,1] to give soft reliability decisions rather than binary ones (Barkeret

al., 2000b). In this case the equations for the bounded marginalisation computation are rewritten so as

to effectively interpolate between the two interpretations of each acoustic feature (i.e. the interpretation

that the feature is reliable, and the interpretation that the feature is unreliable).

In this study, auditory rate maps were used to train a missing data ASR system for recognition of

connected digit strings (such as “three five six zero”). Twelve word-level HMMs were trained (a silence

model, ‘oh’, ‘zero’ and ‘1’ to ‘9’), each consisting of 16 no-skip, straight-through states with

observations modelled by a 7 component diagonal Gaussian mixture.

3. PROCESSING FOR SPECTRAL DISTORTION AND ADDITIVE NOISE

In this section we describe a processing pathway that compensates for spectral distortion and additive

noise. Our approach is based on the combination of three techniques; estimation of a missing data mask

on the basis of SNR in local time-frequency regions (Section 3.1), spectral subtraction (Section 3.2) and

an approach to spectral feature normalisation which is suitable for missing data ASR in the presence of

additive noise (Section 3.3).

3.1. SNR mask estimation

If an estimate of the noise spectrum is available, the local SNR in each frequency channel of the rate

map at each time frame can be used to derive a missing data mask. Local time-frequency regions with

a high SNR (i.e., dominated by speech) are labelled as reliable in the mask, and those with a low SNR

are labelled as unreliable.

Following previous work (Cookeet al., 2001) we compute the local SNR from stationary noise

estimates, which are obtained by averaging the acoustic spectrum over a short period in which speech
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is believed to be absent. Specifically, we estimate the noise spectrum from the firstK=10 frames (i.e.,

100 ms) of the rate map,

(1)

where  and  is the noise estimate for frequency channelj. Note that  is

estimated from a version of the rate map, , to which cube root compression has not been applied.

The noise estimate is used to calculate a local SNR

(2)

which is subsequently used to estimate the missing data mask. Here, we employ a ‘soft’ mask in which

each value is a real number in the range 0 to 1 (Barkeret al., 2000b). Such masks can be interpreted as

giving the probability that each time-frequency region is dominated by the speech signal. The mask

values are produced by passing each local SNR estimate  through a sigmoidal functionσ( ), i.e.

(3)

where  is the mask value for channelj at time framei, α is the slope of the sigmoid andβ is its

centre point. Note that time-frequency regions with a higher local SNR are assigned a higher value in

the mask. The values of the parametersα andβ were found empirically (Barkeret al., 2000b). Note that

for  all mask values are 0.5, indicating complete uncertainty about the signal and noise. With

increasingα the sigmoid (3) becomes steeper, so that the decision between clean and noisy data

approaches a binary one. Here, we use  and .

3.2. Spectral subtraction

The missing data approach aims to identify speech features which are relatively uncontaminated by

noise, and to pass these ‘reliable’ features to the speech recogniser. In practice, even acoustic features

which are classified as reliable by the mask estimation process will contain some degree of noise, and

z j( ) 1
K
---- ye i j,( )

i 1=

K

∑=

ye i j,( ) y i j,( )3
= z j( ) z j( )

ye i j,( )

s i j,( )

s i j,( ) 20log10

ye i j,( ) z j( )–

z j( )
--------------------------------- 

 =

s i j,( )

ms i j,( ) σ s i j,( )[ ] 1
1 α s i j,( ) β–[ ]–{ }exp+
-------------------------------------------------------------= =

ms i j,( )

α 0=

α 3= β 0.4=
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hence there will be a mismatch between the observed acoustics and models trained on clean speech. This

mismatch can be reduced by subtracting the noise estimate from the observed (uncompressed)

noisy features . The ‘cleaned’ rate map is therefore given by:

(4)

The operator [ ]+ denotes half-wave rectification; this ensures that  contains only positive

values. Note that spectral subtraction is performed on the uncompressed rate map, which is subsequently

compressed (cube rooted) before passing to the recogniser.

3.3. Normalisation

Conventionally, spectral features are normalised by the mean and variance in each frequency band

(for example, see Kingsburyet al., 1998). A problem with this approach is that clean regions of the

speech signal may be normalised by a mean and variance that are computed when both speech and noise

sources are present. This is particularly harmful in missing data ASR, which requires that reliable

features presented to the recogniser should be scaled in the same way as the clean speech features used

for training.

Here, we take a different approach in which a normalisation factor is computed only from those

acoustic features that are likely to be dominated by speech (i.e., uncorrupted by noise). Scaling based

only on these regions is likely to reduce the mismatch between the clean training and noisy recognition

conditions. Of course, this normalisation technique requires that speech-dominated features can be

identified in approximately the same way during training and recognition. Fortunately, this is achievable

in practice, as illustrated by the plots of speech-dominated regions for clean and noisy rate maps shown

in Figure 3.

– Figure 3 about here –

Here, we use a simple implementation of this scheme in which the acoustic features in each channel

are normalised by the mean of theL largest features in that channel. We compute the normalisation

factor  for channelj as follows,

z j( )

ye i j,( )

ys i j,( ) ye i j,( ) z j( )–[ ]+3=

ys i j,( )

ηs j( )



HANDLING CONVOLUTIONAL DISTORTION IN MISSINGDATA SPEECHRECOGNITION

Page 11

(5)

where  is the ‘cleaned’ rate map and  is a set containing the indices of theL largest values

of  in channelj. The rationale for Equation 5 is that selection of theL largest values in each

channel of the rate map gives a comparable result with clean (training) and noisy (recognition) data, so

long as the noise is fairly stationary and the global SNR is favourable. Here, we setL to I/D, where I is

the number of time frames in the input andD is a constant (we useD=5).

The value ofL must be set empirically, and depends on two conflicting constraints. Firstly,L should

be chosen small for good performance in very noisy conditions, since relatively few features in the rate

map will be reliable. On the other hand, ifL is too small then a stable estimate of the normalisation factor

cannot be obtained.

4. PROCESSING FOR REVERBERATION

This section describes a processing pathway for missing data ASR in reverberant conditions (see

Figure 1). In the first stage, modulation filtering is used to derive a mask that identifies the speech

features that are least contaminated by reverberation. Following this, spectral features are normalised

using a modification of the technique described in Section 3.3.

4.1. Reverberation mask estimation

Previously, Kingsburyet al. (1998) have shown that modulation filtering can be used to derive robust

features for speech recognition in the presence of reverberation. Here, we use modulation filtering in a

different way. Specifically, it is used to identify spectro-temporal regions that contain strong speech

energy (i.e. regions that are not badly contaminated by reverberation), and hence to derive a

‘reverberation mask’ for missing data ASR using spectral features. We use a modulation filterh(n) of

the following form, where the time indexn is measured in frames (see Section 2.1):

(6)

ηs j( ) 1
L
--- ys i j,( )

i Γs j( )∈
∑=

ys i j,( ) Γs j( )

ys i j,( )

h n( ) hlp n( ) hdiff n( )⊗=
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This is a finite impulse response (FIR) filter consisting of a linear phase lowpass componenthlp and a

differentiatorhdiff (the operator⊗ denotes convolution). The lowpass part hlp was designed using the

MATLAB fir2 command (Mathworks, 2003). The filterh(n) has a pass band between D.C. and 17 Hz

(see Figure 4), and it is used to derive a modulation-filtered rate map  by filtering each channel

j of  as follows:

(7)

The aim of this filtering scheme is to detect regions of reverberated speech in which direct sound and

early reflections dominate, and to mask the areas that contain strong late reverberation. This approach

is motivated by observations on human perception of reverberated speech, which emphasize the

important role of early reflections on speech intelligibility, and the deleterious effects of late

reverberation (Drullmanet al., 1994; Houtgast and Steeneken, 1985). The role of the lowpass

componenthlp is to detect and smooth modulations in the speech range. Following this, the

differentiatorhdiff emphasizes abrupt onsets, which are likely to correspond to direct sound and early

reflections.

– Figure 4 about here –

Subsequently, a threshold is applied to the modulation-filtered rate map in order to produce a binary

mask for the missing data speech recogniser:

(8)

Additionally, the masks are shifted backwards in time to compensate for the delay of the modulation

filter h(n). Note that in contrast to the scheme described in Section 3, here we use a binary mask rather

than a real-valued mask: initial testing showed that there was no performance gain when using the latter.

The value of the threshold  should depend on the degree to which the speech is reverberated.

In our previous work  was hand-tuned to each reverberation condition (Palomäkiet al., 2002), but

more recently we have developed a technique for estimating its value directly from an utterance.

yr i j,( )

y i j,( )

yr i j,( ) h k( )y i k j,–( )
k ∞–=

∞

∑=

mr i j,( ) 1 if yr i j,( ) θ j( )>

0 otherwise



=

θ j( )

θ j( )
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Specifically, the threshold is set according to a simple ‘blurredness’ metric, which exploits the fact that

reverberation tends to smooth the rate map by filling the gaps between speech activity with energy

originating from reflections. The blurredness metricB is given by

(9)

whereI is the number of time frames in the utterance and J=32 is the number of frequency channels. In

practice, we have found that it is preferable for  to depend not only onB, but also on the mean

value over time in channelj of the filtered rate mapyr. Accordingly, we compute the average firing rate

 for each filtered rate map channelj as

(10)

Note that the minimum in the channel is subtracted to ensure that negative values inyr arising from

filtering by Equation 7 are shifted to positive values.

Finally, the threshold  is set according to a sigmoidal function of the average firing rate

and blurrednessB,

(11)

whereγ = 16 is the slope,δ = 0.42 is the centre point andλ=1.3 determines the width of the sigmoid.

These parameters were determined by a series of experiments on a validation set consisting of 300

utterances (different from the training and test sets), which were processed with two different RIRs. A

sigmoidal shape was chosen for Equation 11 in order to allow saturation of the threshold at high

blurredness values (i.e., long reverberation times).

– Figures 5 and 6 about here –

B

1
I
--- y i j,( )

i 1=

I

∑

maxi y i j,( )[ ]
--------------------------------

 
 
 
 
 
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j 1=

J

∑=

θ j( )

e j( )

e j( ) 1
I
--- yr i j,( ) mini yr i j,( )[ ]–{ }

i 0=

I

∑=

θ j( ) e j( )

θ j( ) e j( ) λ
1 γ B δ–( )–( )exp+
-----------------------------------------------⋅=
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The reverberation mask estimation process is illustrated in Figures 5 and 6. Figure 5 shows the

distribution of the blurredness metric computed for 300 utterances, when no reverberation is present and

when the T60 reverberation time is 0.7 sec. and 1.5 sec. Note that the distribution shifts to the right (i.e.,

the mean blurredness increases) with increasing reverberation time.

Figure 6 demonstrates the mask estimation process for a single frequency channel with a centre

frequency of 103 Hz. The top panel (A) shows the rate map values in this channel, which are smoothed

with a lowpass filter hlp (B) and then differentiated by filtering with hdiff (C). Also in panel C, the

threshold  obtained from Equations 9-11 is shown as a solid line. Finally, the bottom panel (D)

shows the reliable regions (solid line) and unreliable regions (dotted line) of the rate map selected by

Equation 8. Note that these regions tend to be high in energy, and usually correspond to the first part of

a sustained acoustic input (i.e., late reflections are suppressed).

4.2. Normalisation

In reverberant conditions, we do not use a noise estimate; rather, we select the L largest values from

the regions of  which are marked as clean according to the reverberation mask. Specifically, we

define a normalisation factor  as follows:

(12a)

(12b)

Here,  is the binary reverberation mask and  is the set containing the indices of the L

largest values of  in channel j. Generally L is set as described in Section 3.3. In cases where the

value of L computed in this way is less than the number of reliable regions, L is set to the number of

reliable regions exactly. Moreover, if channel j does not contain any speech dominated features, i.e.

when , the scaling factor  is interpolated from adjacent channels (or extrapolated in

the case of the lowest and highest frequency channels).

θ j( )

y i j,( )

ηr j( )

ηr j( ) 1
L
--- yc i j,( )

i Γr j( )∈
∑=

yc i j,( ) mr i j,( ) y i j,( )⋅=

mr i j,( ) Γr j( )

yc i j,( )

Γr j( ) ∅= ηr j( )
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5. EVALUATION

5.1. Corpus and recogniser configuration

The missing data ASR system was evaluated using a subset of the Aurora connected digits

recognition task (Pearce and Hirsch, 2000). The sampling rate of all speech data was 8 kHz. Auditory

rate maps were obtained for the training section of the Aurora corpus, and were used to train 12 word-

level HMMs (see Section 2.2). In the first experiment (see below), the performance of the missing data

ASR system was compared against a baseline HMM recogniser which employed a feature vector of 13

mean-normalised mel-cepstral coefficients (MFCCs) with first and second order temporal derivatives.

The MFCC baseline recogniser was configured in a similar manner to the missing data system, except

that only 3 mixture components were used to model each state (as opposed to 7 components for the

system trained on rate maps) since it was noted that more mixtures caused the MFCC-based models to

overfit to clean speech. All models were trained with clean (noiseless and unreverberated) signals. In

the experiments involving spectral distortion and reverberation, test utterances were convolved with a

microphone or room impulse response, respectively. All of the utterances were presumed to start from

silence.

5.2. Baseline hybrid HMM-MLP recogniser

In the following experiments we compare our system against a hybrid HMM-MLP (hidden Markov

model multi-layer perceptron) recogniser described by Kingsbury (1998). Kingsbury’s system uses two

streams of acoustic features which provide robust encoding of speech in the presence of reverberation;

cepstral features (plus their deltas and double deltas) obtained by perceptual linear prediction (PLP),

together with modulation filtered spectrogram (MSG) features. Here, we have adapted Kingsbury’s

system for comparison with our missing data recogniser, maintaining the original parameters of his

system wherever possible. The system was implemented using the STRUT (1997) speech recognition

toolkit. On the test corpus, we present results for three configurations of the hybrid recogniser, firstly

using PLP features alone, secondly using MSG features alone, and finally by combining likelihood

estimates from PLP and MSG features.
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Following Kingsbury’s approach, four different MLPs were trained for likelihood estimation. The

first two of these were used for tests with PLP and MSG features alone, and the second two were used

for the combined features. The MLP network topologies were 189× 488× 25 (input layer× hidden layer

× output layer) for PLP features alone and 189× 328× 25 for MSG features alone. For the recogniser

using both features, the number of units in the hidden layer of each network was halved, as described

by Kingsbury (1998).

Acoustic models for 23 phonemes, silence and unknown (required by the STRUT tools) were

obtained from the training part of the Aurora corpus (see also Hermanskyet al., 2000). Durational

information was included in the HMM model for each phone by matching the number of states in the

model to half the average duration of the phone, computed from the training set (see page 45 of

Kingsbury (1998) for details).

5.3. Experiment 1: Spectral distortion with additive noise

In the first experiment, the performance of the spectral normalisation method was evaluated using the

Aurora 2 task. The Aurora corpus contains three different test sets, labelled A, B and C. Test sets A and

B are comprised of different utterances and also differ from each other due to the type of additive noise;

subway noise in the former and car noise in the latter. Also, test sets A and B have transmission line

characteristics defined by G.712 (ITU-T, 1996a), which is the same characteristic applied to the training

part of the corpus. Therefore, test sets A and B are not regarded as spectrally distorted.

For testing the effect of transmission line distortion, test set C is provided. Test set C is a subset of

the speech and noise mixtures from sets A and B, but in addition the signals are filtered with the MIRS

telephone front-end (ITU-T, 1996b). MIRS differs in its spectral characteristic to G.712; the latter has

a flat response in the telephone band of 300 Hz – 3.4 kHz, whereas MIRS has a rising gain at higher

frequencies and some attenuation at low frequencies. MIRS defines an official recommendation for the

frequency characteristic of a telecommunication channel sender and receiver, including the microphone

and speaker respectively.
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In order to evaluate the effect of spectral distortion we used test signals which shared common noise

types in the spectrally matching test sets (A and B) and spectrally mismatching case (C). We also created

two additional spectrally distorted test conditions by convolving samples (speech with subway noise,

test set A; and speech with street noise test set B) with impulse responses of poor quality microphones.

The impulse responses of these microphones are depicted in Figure 7.

– Figure 7, Table 1 and Table 2 about here –

To put the performance of our system in perspective, it is tested against a missing data system that

does not use any spectral normalisation (Barker et al., 2000b). We also compare the performance of

missing data systems against the MFCC baseline system, generated as recommended within the Aurora

framework (Pearce and Hirsch, 2000). The results of the experiment are shown in Tables 1 and 2. In the

spectrally non-distorted test case (test set A subway noise, and test set B street noise), the performance

of the two missing data systems was comparable, with both performing better than the MFCC baseline

at low SNR (Table 1). In these particular (non-distorted) test cases, the performance of the proposed

missing data system with spectral normalisation was slightly lower than that of the system without

normalisation. However, when tested with spectrally distorted input (Table 2) the advantages of the

proposed normalisation technique become evident. The differences in performance are most noticeable

in the worst spectral distortion condition (microphone 2) and at low SNRs.

5.4. Experiment 2: Random gain modulations with additive noise

In the Aurora test corpus the energy of each speech sample was equalised before artificially adding noise

(Pearce and Hirsch, 2000). Clearly, such equalisation is not representative of natural acoustic

environments, in which speech intensity depends upon the signal path (e.g., the distance between the

speaker and the microphone) and on the loudness of speech production itself. In previous missing data

work (e.g., Barker et al., 2000a,b; 2001a,b; Cooke et al., 2001) this issue has not been addressed; it is

therefore unlikely that the results obtained on energy-equalised corpora in these studies will generalise

to real acoustic environments. Here, we demonstrate that our proposed spectral normalisation scheme

also improves robustness when the acoustic input is subject to variations in overall sound level.
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For testing purposes we generated a random gain for each utterance in the test set. This gain was held

constant for the duration of the utterance. It should be noted that the same seed was used to randomise

gains in each experimental condition; hence the corresponding speech samples were scaled with the

same random value in each condition, in order to allow a direct comparison.

– Table 3 about here –

Gain modulation tests are shown in Table 3 for missing data systems with and without spectral

normalisation, and for the MFCC baseline system. The gain on the input was varied randomly between

-10 dB and 10 dB. Comparison with Table 1 indicates that the performance of the missing data

recogniser without spectral normalisation is degraded by gain modulation, even in the clean condition.

In comparison, the missing data system with spectral normalisation is unaffected by gain modulation.

5.5. Experiment 3: Reverberation

The degree of reverberation in an enclosed space is often characterized using a simple measure called

reverberation time T60, which is defined as the time required for the reverberation level to drop 60 dB

below that of the original sound onset. For example, the recommended T60 for a speech hall is 0.4 sec.,

whereas a richer acoustic environment (and hence a longer T60) is required for music; a typical value

for a concert hall is 2.0 sec.

For testing the model performance under reverberant conditions the speech samples were convolved

with impulse responses of rooms with different reverberation characteristics. A total of 6 impulse

responses were used in the testing. Four of these responses were originally used by Kingsbury (1998).

They were recorded in a varechoic chamber with two different settings of the wall panels. For the first

wall panel setting the T60 was 0.7 sec. and the distances between the source and microphone were 2.35

m and 3.05 m. For the second wall panel setting, the T60 was 1.2 sec. and source-microphone distances

were 2.0 m and 3.05 m. Another two impulse responses (not used by Kingsbury) were measured in a

larger room, having a T60 of 1.5 sec. and source-microphone distances of 6.1 m and 18.3 m.

– Table 4 about here –
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The results of this experiment are shown in Table 4. The missing data system with reverberation

mask estimation, described in Section 4.1, outperformed the MSG+PLP baseline in the most reverberant

test cases. However, the performance of the MSG+PLP system was better than that of the missing data

system for the shortest T60 condition, and in clean conditions (no reverberation). The hybrid HMM-

MLP recogniser using MSG+PLP features always performed better than configurations of this system

which used MSG or PLP features alone.

6. DISCUSSION

In this paper we have described techniques for handling convolutional distortion in ‘missing data’

speech recognition, an issue which has been largely unaddressed to date. As the convolutional

interference can be quite different in nature depending upon the length of the impulse response

concerned, we propose two approaches; one to handle spectral distortion due to a transmission line or

audio equipment, and another to handle room reverberation interference. In summary, the results show

substantial performance improvements compared to a standard missing data recogniser when speech is

contaminated by additive noise and spectrally distorted or when the intensity of the input speech varies.

The performance of the missing data approach is superior to that of a MFCC baseline system at low

SNRs. We also developed a missing data mask estimation system for reverberant speech recognition,

based on detection of the strongest modulation frequencies of speech. Our system performs rather better

than a hybrid HMM-MLP recogniser employing MSG and PLP features (Kingsbury, 1998; Kingsbury

et al., 1998), for T60 reverberation times of 1.2 sec. and greater.

The reverberation masking system proposed here has some parallels with RASTA-PLP (Hermansky

and Morgan, 1994) and MSG (Kingsbury, 1998), which are used for producing noise robust feature

vectors. Both of these techniques have a processing chain that firstly divides the signal into frequency

bands and then (after downsampling and compression) applies a band-pass filter to emphasise the most

noise-tolerant speech signal regions. RASTA-PLP and MSG have both been applied to robust ASR in

reverberation, with a combination of likelihood estimates from MSG and PLP being most successful

(Kingsbury, 1998).
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Both MSG and the proposed modulation filtering approach to mask estimation exploit the fact that

the strongest modulations of speech occur at modulation frequencies roughly between 0 Hz and 10 Hz.

We believe, however, that our approach has some advantages. When noise robust techniques such as

MSG are used, the same acoustic features must be used during training and recognition. This, in turn,

might lead to a compromise because the use of particular acoustic features may effectively tune the ASR

system to certain acoustic conditions. For example, when using modulation-filtered features, the

configuration of the front-end needed for optimal performance in reverberant conditions may be less

than optimal for recognition of clean speech.

In principle, the missing data approach can overcome this problem because unreliable regions are

filtered out by the mask estimation processing during recognition; acoustic models are trained on clean

speech, and hence there is no need to re-train for different conditions. In practice, however, the baseline

system outperformed our missing data system in the least reverberated cases. This may be because our

method of estimating the amount of reverberation present in a speech sample is not sensitive enough to

distinguish between anechoic and mildly reverberant conditions; future work will address this issue. In

the most reverberant cases, however, the missing data processing has a clear advantage compared to the

MSG+PLP system.

A benefit of the missing data approach is that it does not make assumptions about the type of noise

present. Therefore, a missing data recogniser can be adapted to different noise conditions simply by

changing the mask estimation rule; any assumptions about the noise type are restricted to the mask

estimation process. Hence, different types of front-end can be ‘switched in’. For example, here we have

described two front-ends for the same recogniser; one that is robust for additive noise and another that

is robust for reverberation. This approach may offer advantages for speech recognition in mobile

devices, since the mask estimation process could be dynamically altered to compensate for different

acoustic conditions as they arise. Future work will investigate this possibility.
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FIGURE LEGENDS

Figure 1. Schematic diagram of the model. In the processing pathway described in Section 3, a mask

 is derived from local SNR estimates, and this is passed to the recogniser together with a ‘cleaned’

rate map , which is normalised by a factor . In the pathway described in Section 4, a reverberation

mask  is estimated and this is passed to the recogniser together with the rate mapy, normalised by a

factor .

Figure 2. A. Rate map for the male utterance “zero one zero five nine” without added noise. B. Rate

map for the same utterance in the presence of noise with an SNR of 5 dB. C. Soft SNR mask (black

pixels are reliable, white pixels are unreliable).

Figure 3. Selection of time-frequency regions for spectral normalisation, for the male utterance “seven

two one nine” when (A) clean and (B) mixed with subway noise at a SNR of 5 dB. Black areas

correspond to the regions selected for scaling according to the L-largest rule.

Figure 4. Frequency response of the modulation filter, .

Figure 5. Distributions of blurrednessB for three reverberation conditions, computed from a test set of

300 utterances.

Figure 6. Demonstration of modulation filtering-based mask estimation. A. Output of the rate map

channel with a centre frequency of 103 Hz. B. Rate map channel filtered by the lowpass part of

the modulation filter. C. Rate map channel filtered by the whole modulation filter. The horizontal

line indicates the value of the thresholdθ. D. Estimated reliable regions (solid line) and unreliable

regions (dotted line).

Figure 7. Frequency responses of the two microphone responses used in the second experiment.
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TABLE LEGENDS

Table 1. Speech recognition performance for non-distorted test cases. Each row shows the results for

three different recognisers: missing data recogniser with spectral normalisation (MD-SN), missing data

recogniser without spectral normalisation (MD) and Aurora MFCC baseline (MFCC). The test cases are

subway noise and street noise, added at SNRs between -5 dB and 20 dB. Results for clean speech are

also shown.

Table 2. Speech recognition performance for spectrally distorted test cases. Each row shows the results

for three different recognisers: missing data recogniser with spectral normalisation (MD-SN), missing

data recogniser without spectral normalisation (MD) and Aurora MFCC baseline (MFCC). The test

cases are (from top to bottom) MIRS characteristic, first microphone characteristic and second

microphone characteristic. In each condition, the filtering characteristic was applied after mixing with

subway noise or street noise, at SNRs between -5 dB and 20 dB. The ‘clean’ column indicates

performance when the respective filtering characteristic was applied to speech without added noise.

Table 3. Speech recognition performance in the gain modulation test. Each row of the table shows the

results for three different recognisers: missing data recogniser with spectral normalisation (MD-SN),

missing data recogniser without spectral normalisation (MD) and Aurora MFCC baseline (MFCC). Test

conditions are gain modulations with peak amplitude change of±10 dB after mixing with subway noise

or with street noise. For each noise condition, results are shown for SNRs between -5 dB and 20 dB, and

for clean speech (i.e., gain modulation but no added noise).

Table 4. Speech recognition performance in the reverberation task. Results are shown for four systems

in six reverberation conditions, and for unreverberated speech. Columns indicate the performance of the

hybrid HMM-MLP recogniser using PLP features alone (HYBRID PLP), modulation spectrogram

features alone (HYBRID MSG) and both features together (HYBRID MSG+PLP), and for the missing

data system (MD).
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Table 1

Table 2

Noise
type

Method -5 0 5 10 15 20 Clean

MD-SN 28.7 54.0 74.8 86.8 92.1 94.9 97.5

Subway MD 30.0 54.2 75.3 85.9 92.6 95.7 98.8

MFCC 12.6 27.3 53.4 78.7 92.9 97.0 98.8

MD-SN 24.5 51.6 73.2 85.1 91.6 94.3 97.2

Street MD 28.7 52.9 73.2 84.9 91.8 94.9 98.6

MFCC 10.1 18.7 38.2 66.8 88.3 95.8 99.0

Noise
type

-5 0 5 10 15 20 Clean

MIRS MD-SN 28.4 55.0 75.8 85.8 91.7 94.5 97.3

Subway MD 20.7 44.3 67.3 81.5 89.6 92.9 97.6

MFCC 12.1 26.0 52.8 75.2 87.6 94.5 99.0

MIRS MD-SN 25.8 51.7 73.2 83.6 91.4 94.3 96.9

Street MD 19.4 40.8 63.9 78.9 87.2 91.7 96.8

MFCC 10.7 21.6 48.9 75.2 89.7 95.1 99.0

Microphone 1 MD-SN 26.8 52.4 72.8 85.1 91.2 94.4 97.3

Subway MD 22.2 45.4 69.1 83.6 91.1 94.2 98.3

MFCC 8.9 17.6 48.3 76.6 90.9 96.0 98.7

Microphone 1 MD-SN 23.9 50.9 71.7 84.5 90.6 93.6 96.8

Street MD 22.2 44.3 67.9 81.2 89.7 94.2 97.7

MFCC 9.4 15.1 35.4 66.2 87.9 95.8 98.8

Microphone 2 MD-SN 23.9 48.4 69.3 82.1 90.1 93.6 97.1

Subway MD 14.4 28.0 46.2 60.2 72.5 80.3 88.7

MFCC 7.7 7.3 8.0 14.7 28.5 50.5 93.8

Microphone 2 MD-SN 21.8 47.5 70.1 83.6 90.0 93.0 95.9

Street MD 17.6 32.9 49.2 62.1 72.9 80.0 87.8

MFCC 9.0 12.8 23.1 37.2 55.6 71.8 94.1
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Table 3

Table 4

Noise type Method -5 0 5 10 15 20 Clean

Subway MD-SN 28.6 54.2 75.0 86.5 91.9 94.8 97.5

MD 24.0 47.4 67.9 79.6 87.0 91.1 96.2

MFCC 12.3 27.2 52.7 75.0 90.3 95.9 98.8

Street MD-SN 25.2 51.4 73.1 84.9 91.8 94.2 97.1

MD 24.8 46.0 66.0 78.6 86.9 90.4 96.1

MFCC 10.6 19.0 38.5 64.1 84.1 93.6 99.0

T60 and source-
receiver distance

HYBRID
PLP

HYBRID
MSG

HYBRID
MSG+PLP

MD

1.5 sec., 18.3 m 53.3 53.5 59.8 63.2

1.5 sec., 6.1 m 55.2 62.0 64.0 67.6

1.2 sec., 3.05 m 59.1 66.6 69.5 75.6

1.2 sec., 2.0 m 60.2 71.3 71.5 77.6

0.7 sec., 3.05 m 88.0 93.0 93.5 91.9

0.7 sec., 2.35 m 89.5 94.0 95.1 93.0

Unreverberated 98.2 98.0 98.5 97.0
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Figure 3

Figure 4
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Figure 5
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Figure 6
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Figure 7
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