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ABSTRACT

In this study we describe an auditory processing front-end for
missing data speech recognition, which is robust in the presence
of reverberation. The model attempts to identify time-frequency
regions that are not badly contaminated by reverberation and have
strong speech energy. This is achieved by applying reverberation
masking. Subsequently, reliable time-frequency regions are
passed to a ‘missing data’ speech recogniser for classification. We
demonstrate that the model improves recognition performance in
three different virtual rooms where reverberation time T60 varies
from 0.7 sec to 2.7 sec. We also discuss the advantages of our
approach over RASTA and modulation filtered spectrograms.

1. INTRODUCTION

Human listeners have little difficulty in recognising speech in
moderately reverberant conditions, whereas reverberation
substantially degrades the performance of current automatic
speech recognition (ASR) systems. It is reasonable to argue,
therefore, that ASR performance in the presence of reverberation
could be improved by adopting an approach that models auditory
processing more closely.

Room reverberation introduces convolutional interference
that can be characterised as both spectral distortion and additive
noise. Spectral shaping of the speech signal arises from room
modes that emphasize some frequencies more than the others.
Room reflections can be divided into early reverberation, which is
highly correlated with the speech signal, and late reverberation
which is less correlated. Therefore the interference caused by late
reverberation can be characterised as additive noise.

Broadly, four strategies have been proposed to handle
reverberation (for an overview see [9]): training speech models in
the presence of reverberation, dereverberation, source separation
via microphone array processing and the search for more robust
feature vectors for the recogniser. The dereverberation approach
attempts to estimate a model of the room impulse response and
tries to remove it by deconvolution. However, blind
deconvolution from single microphone input has remained a
difficult problem. Probably the best results so far have been
achieved with microphone array processing, but the problem with
this technique is that at least two microphone signals are needed
when one speech signal is separated. An alternative approach is to
seek noise robust feature vectors. An interesting feature of this
approach is that better performance in reverberant or noisy

conditions is usually achieved when the system mimics functions
of the human auditory system [5],[6],[7]. A good example of this
is RASTA-PLP (RelAtive SpecTrAl Perceptual Linear Predictive
analysis) [5], which mimics several aspects of auditory processing
rather closely. Another approach, especially optimised for
reverberation, is the modulation filtered spectrogram (MSG)
representation [7].

However, knowledge about human auditory processing can
inform ASR beyond the feature extraction stage. Human listeners
are able to perceive speech robustly even when parts of the signal
are masked by noise or deleted by band-limiting. According to
Cooke and his co-workers [4], this implies that the auditory
system has a mechanism for dealing with ‘missing data’. They
have exploited this notion in ASR by adapting a hidden Markov
model (HMM) classifier to deal with missing or unreliable
features. The missing data paradigm is complementary to a
‘computational auditory scene analysis’ (CASA) approach; an
auditory model can be used to decide which acoustic components
belong to a target speech source, and only these ‘reliable’ features
are passed to the recogniser. Indeed, auditory front-ends have
been combined with missing data speech recognition systems in
several previous studies [2],[3],[10].

In this study we propose a new method using an auditory
front-end, which enhances recognition performance in the
precence of reverberation. Our model is based on a reverberation
masking algorithm which attempts to find spectro-temporal
regions which are not severely contaminated by reverberation and
discards those which are. The model is evaluated in three different
virtual rooms, in which the reverbation time T60 varies from 0.7
sec to 2.7 sec. The results obtained with the new method are
compared against a baseline recogniser which uses a mean
normalised mel-cepstral coefficient (MFCC) front-end.

2. MODEL

2.1. Monaural pathway

To produce the feature vectors for the recogniser a simple
monaural model of the auditory pathway is used (see Fig 1).
Cochlear frequency analysis is simulated by a bank of 32
bandpass gammatone filters with centre frequencies spaced on the
equivalent rectangular bandwidth (ERB) scale between 50 Hz and
8 kHz. The output of each filter is half-wave rectified and
compressed to give a representation of auditory nerve activity.
Then the instantaneous Hilbert envelope is computed at the output
of each filter. This is smoothed by a first-order low-pass filter with
an 8 ms time constant, sampled at 10 ms intervals, and finally cube
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root compressed to give a representation of auditory nerve firing
rate (‘rate map’; see Figure 3 for an example).

Because reverberation introduces level changes which
degrade recogniser performance, a gain adjustment g was applied
to the rate maps. We use g=1 for the non-reverberant case,
g=0.738 for all the reverberant cases.

2.2. Missing data speech recogniser

In this study an HMM speech recogniser is adapted to exploit the
missing data technique [4]. Automatic speech recognition is a
classification problem in which an acoustic observation vector x
must be assigned to a class of speech sound C. However, when
noise is present some components of x may be unreliable or
missing. In these cases, the likelihood f(x|C) cannot be computed
in the usual manner. The ‘missing data’ technique addresses this
problem by partitioning x into reliable and unreliable components,
xr and xu. The reliable components xr are directly available to the
classifier. In practice, a binary ‘mask’ m(i,j) is used to indicate
whether the acoustic evidence in each time-frequency region is
reliable.

In the simplest approach, the components of the unreliable
part xu are simply ignored so that classification is based on the
marginal distribution f(xr|C). However, when x is an acoustic
vector additional constraints can be exploited, since it is known
that uncertain components will have bounded values (the
‘bounded marginalisation’ method [4]). In this study, x is an
estimate of auditory nerve firing rate, so the lower bound for xu is
zero and the upper bound is the observed firing rate. We also use
first order temporal derivatives and word insertion penalties,
which are known to improve the performance of the missing data
approach [3].

2.3. Mask generation heuristics

In this study we use two different mask estimation heuristics.
Firstly, we produce a mask exploiting a priori information by
measuring the difference d between the clean signal x and its
reverberation contaminated counterpart . Then the mask values
m are set as follows:

(1)

where i denotes frequency channel, j is the current time instant,
θap is a threshold, 1=reliable and 0=unreliable. The purpose of (1)
is to test the limits of the missing data approach by producing
‘ideal’ masks, and to test how close to this limit we can reach with
mask estimation based on a posteriori information only.

The second heuristic attempts to detect spectro-temporal
regions that contain strong speech energy and are not badly

contaminated by the reverberation. For this purpose we define a
reverberation masking filter,

(2)

where the filter coefficients were computed from one period of a
sinusoid. This corresponds to a band-pass filter that has lowpass
characteristics with an additional zero at DC. Two filters were
used, one optimised for the shortest reverberation time and
another for the two longest: their frequency responses are plotted
in Fig. 2.

Figure 2: Frequency response of the filters used for reverberation
times T60 = 0.7 sec, centre frequency 6.7 Hz (top) and for T60 =
1.7, 2.7 sec, centre frequency 4.8 Hz (bottom).

Mask values are computed by thresholding the filtered
reverberation contaminated signal y= * h, where h is the impulse
response corresponding to (2). Hence the mask was described by

(3)

Longer reverberation times caused the rate maps to be blurred,
and therefore a longer integration period (resulting a narrower
pass band) was necessary. To compensate for the filter delay, the
masks were shifted backwards in time by the corresponding delay.
Thresholds were experimentally tuned to give optimal result for
each reverberation conditions.

During the experiments, several different types of filter design
were investigated and a smooth sinusoidal impulse response was
found to give the best results. The key issue in the filter design was
firstly to have a long enough integration phase followed by a
differentiation phase. This made it possible to detect the least
reverberated areas that usually coincided with the strongest
modulation frequencies of speech. Figure 3 shows that our model
detects these areas rather reliably. As shown in the figure, this
gives a mask estimate with wide clean areas that correspond to the
a priori values well.
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Figure 1: Schematic diagram of the model.
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Figure 3: Left panel: Rate maps computed for anechoic (top) and
reverberant (T60=1.7 D/R=-10) conditions (bottom). Right panel:
a priori mask (top) and mask based on reverberation masking
(bottom). Black areas in the mask (right panel) correspond to
reliable speech regions, white areas correspond to reverberation
contaminated regions.

3. EVALUATION

3.1. Corpus & HMM settings

The model was evaluated on a 240 utterance subset of male
speakers from the TiDigits connected digits corpus [8]. Auditory
rate maps and MFCCs were obtained for the training section of the
corpus, and were used to train 12 word-level HMMs (a silence
model, ‘oh’, ‘zero’ and ‘1’ to ‘9’) each consisting of 8 no-skip,
straight-through states with observations modeled by a 10
component diagonal Gaussian mixture. All models were trained
on unreverberated signals. The test utterances were then
convolved with an artificially generated room impulse response.
All of the utterances were presumed to start from silence. For a
baseline result we used mean normalised mel-cepstral coefficients
(MFCC) with 13 cepstral coefficients, and 1st and 2nd order
temporal derivatives.

3.2. Testing the model under reverberation

The reverberation of an enclosure is often characterized using
a simple measure called reverberation time T60, which is defined
as the time required for the reverberation to drop 60 decibels
below the original sound level. For example, the recommended
T60 for a speech hall is 0.4 sec. A richer acoustic environment is
required for music, and therefore the T60 should be longer - a
typical value for a concert hall is 2.0 sec. Another useful measure
considered here is the ratio of direct sound to reverberated sound

(D/R). In practice D/R alters when the distance between a
measurement point and the source changes, or alternatively when
the direct sound pathway becomes blocked or attenuated.

In this study the room impulse responses were artificially
generated by producing early reflections using the image model.
The basic principle of the image model is that reflection paths
from a sound source to a listener are found by reflecting the sound
source against all surfaces of the room [1]. Late reverberation was
taken from a real room impulse response having a high density of
reflections. This was windowed to give a realistic exponential
decay for different reverberation times used in our experiments.
The use of the image model to generate early reflections allowed
us to easily configure the room model to give different test
conditions. Similarly, using a real room response for the late
reverberation model made it possible to produce a reverberation
tail that has a high density of reflections and a realistic distribution
of energy across frequencies. Related models of room
reverberation have previously been employed in speech
recognition by other workers [7].

For testing the model, we generated an early reflection pattern
with the image model for three different rectangular spaces
(R1=15x13x6.5m3, R2=25x20x6m3, R3=55x35x14m3) and fitted
the exponential decay of late reverberation to these. The resulting
reverberation times were T60 = 0.7, 1.7 and 2.7 sec respectively.
All spaces were tested with a D/R of 0 dB and -10 dB. A -10 dB
ratio was obtained with 6.5, 8 and 14 m distances between the
speaker and the recogniser in the three different rooms R1, R2 and
R3 respectively. For 0 dB D/R the direct sound was scaled by 10
dB without altering the pattern of reverberation.

3.3. Results

Table 1 shows the recognition performance in three different
rooms for two D/R. The performance of the missing data speech
recogniser with different mask estimation techniques is compared
against a MFCC front-end. Different approaches as they appear in
the table are (i) unity mask, i.e. all features are passed to the
recogniser - this corresponds to a conventional HMM recogniser
without missing data processing (ii) MFCC-based speech
recogniser (iii) missing data mask estimation using reverberation
masking (iv) using a mask based on a priori knowledge of the
clean regions of the signal. The clean (unreverberated) utterances
were tested only with the unity mask and MFCC recogniser, but
not for the two missing data techniques. This is based on the

0 0.5 1 1.5 2 2.5

0.5

2

6.4

0 0.5 1 1.5 2 2.5

0.5

2

6.4

0 0.5 1 1.5 2 2.5

0.5

2

6.4

0 0.5 1 1.5 2 2.5

0.5

2

6.4

Time (sec)Time (sec)

G
T

 c
en

tr
e 

F
re

q.
 (

kH
z)

Recognition
Technique

Clean
T60=0.7s
D/R=0dB

T60=0.7s
D/R=-10db

T60=1.7s
D/R=0dB

T60=1.7s
D/R=-10dB

T60=2.7s
D/R=0dB

T60=2.7s
D/R=-10dB

Unity mask 98.26 62.48 46.39 42.82 29.24 34.90 24.28

MFCC 99.65 60.40 47.08 47.35 34.46 40.73 28.55

Reverb. masking 90.33 85.03 82.25 71.11 66.05 45.52

a priori mask 95.82 93.73 92.42 89.12 90.60 87.99

Table 1: Speech recognition accuracy (100-WER, word error rate) in three different virtual rooms with two different D/R-ratios.
Recognition performance of missing data recognition with different mask estimation methods is compared against a baseline obtained with
a MFCC front-end.
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assumption that for the missing data approach, optimal
performance on clean speech will be obtained with a unity mask.

In all the different experiments, the missing data approach
with reverberation masking substantially outperforms the MFCC
and unity mask approaches. The a priori results suggest a ceiling
performance that may be achieved using the current missing data
approach. When the T60 became longer the performance
difference between a priori and reverberation masking techniques
increased. This result is not suprising, since the increased
reverberation causes more blur in the rate maps - thus it is more
difficult to produce accurate masks based on a posteriori
information only.

All of the utterances started from silence, and hence in the
most reverberant environments the reverberation more greatly
affected the last digits of the utterance. This was apparent from
detailed examination of our recognition results; approaches that
didn’t use reverberation masking performed relatively poorly on
later digits compared to the first digit.

4. DISCUSSION

In this paper we have proposed a new approach to speech
recognition in reverberation, which uses a reverberation masking
technique as a front-end for a missing data speech recogniser. The
results in Table 1 demonstrate that our model is relatively robust
in the presence of reverberation. Using our approach over 85%
recognition accuracy was achieved for a 0.7 T60 reverberation
time, which is already 0.3 sec longer than the 0.4 sec
recommended for speech hall design. Also, with longer
reverberation times rather competitive recognition results were
achieved when compared to previous research. However, human
performance still clearly exceeds the results presented here.

The model proposed here has some parallels to earlier work on
RASTA-PLP and MSG that are used for producing noise robust
feature vectors. Both of these techniques have a processing chain
that firstly divides the signal into frequency bands and then (after
downsampling and compression) applies a band-pass filter to
emphasise the most noise tolerant speech signal regions. RASTA-
PLP and MSG (also together with PLP) have both been applied to
robust speech recognition in reverberation, with the latter
approach perhaps being the most successful. We note, however,
that MSG requires parameter adjustment for optimal performance
when acoustic conditions change radically [6]. Since the same
front-end settings must be used during both recognition (of
reverberated speech) and training (typically on clean speech),
retraining may be necessary in order to adapt a MSG-based
recogniser to different reverberation conditions.

A general problem with noise robust feature vector
approaches is that their performance on clean speech is sometimes
compromised. Furthermore, using noise robust feature vectors
sometimes gives worse performance when the type of noise is
changed. In contrast, our ‘missing data’ recogniser can be adapted
to different noise conditions simply by changing the mask
estimation rule, thus avoiding the need for retraining. Hence,
different types of front-end can be easily ‘switched in’ (for
example, changing from a front-end that is optimal for additive
noise to a front end that is robust for reverberation). Performing

such modifications in an adaptive manner is a challenging
problem that we will address in future work. In this study all
thresholds were experimentally tuned for each case. Adaptive
selection of these thresholds is also an issue for future research.

Kingsbury and his co-workers [6],[7] suggest that the MSG
technique enhances ASR performance because the modulation
frequencies remaining after their filtering approach are those
which are known to be most important in human speech
recognition. A similar explanation also underlies our study.
Equally, though, our approach can be regarded as one whose aim
is to identify the least reverberation contaminated regions of the
signal that usually coincide with the strongest speech
modulations. It is evident from Figure 3 that the model is able to
find such regions rather reliably.

Our system showed a significant improvement compared to
the baseline results obtained using a MFCC-based recogniser.
Clearly, however, this baseline system does not constitute a state-
of-the-art recogniser of reverberant speech. Our future intention is
to compare our system against MSG and combined MSG-PLP
front-ends which are known to give good performance in
reverberation.
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