
Beat Tracking by Dynamic Programming

Daniel P.W. Ellis

LabROSA, Columbia University, New York

July 16, 2007

Abstract

Beat tracking – i.e. deriving from a music audio signal a sequence of beat instants that

might correspond to when a human listener would tap his foot – involves satisfying two con-

straints: On the one hand, the selected instants should generally correspond to moments in the

audio where a beat is indicated, for instance by the onset of a note played by one of the instru-

ments. On the other hand, the set of beats should reflect a locally-constant inter-beat-interval,

since it is this regular spacing between beat times that defines musical rhythm. These dual

constraints map neatly onto the two constraints optimized in dynamic programming, the local

match, and the transition cost. We describe a beat tracking system which first estimates a global

tempo, uses this tempo to construct a transition cost function, then uses dynamic programming

to find the best-scoring set of beat times that reflect the tempo as well as corresponding to

moments of high ‘onset strength’ in a function derived from the audio. This very simple and

computationally efficient procedure is shown to perform well on the MIREX-06 beat track-

ing training data, achieving an average beat accuracy of just under 60% on the development

data. We also examine the impact of the assumption of a fixed target tempo, and show that the

system is typically able to track tempo changes in a range of ±10% of the target tempo.

1

1 Introduction

Researchers have been building and testing systems for tracking beat times in music for several

decades, ranging from the ‘foot tapping’ systems of Desain and Honing [1999], which were driven

by symbolically-encoded event times, to the more recent audio-driven systems as evaluated in the

MIREX-06 Audio Beat Tracking evaluation [McKinney and Moelants, 2006a]; a more complete

overview is given in the lead paper in this collection [McKinney et al., 2007].

Here, we describe a system that was part of the latter evaluation, coming among the statistically-

equivalent top-performers of the five systems evaluated. Our system casts beat tracking into a

simple optimization framework by defining an objective function that seeks to maximize both the

“onset strength” at every hypothesized beat time (where the onset strength function is derived from

the music audio by some suitable mechanism), and the consistency of the inter-onset-interval with

some pre-estimated constant tempo. (We note in passing that human perception of beat instants

tends to smooth out inter-beat-intervals rather than adhering strictly to maxima in onset strength

[Dixon et al., 2006], but this could be modeled as a subsequent, smoothing stage). Although the

requirement of an a priori tempo is a weakness, the reward is a particularly efficient beat-tracking

system that is guaranteed to find the set of beat times that optimizes the objective function, thanks

to its ability to use the well-known dynamic programming algorithm [Bellman, 1957].

The idea of using dynamic programming for beat tracking was proposed by Laroche [2003],

where an onset function was compared to a predefined envelope spanning multiple beats that

incorporated expectations concerning how a particular tempo is realized in terms of strong and

weak beats; dynamic programming efficiently enforced continuity in both beat spacing and tempo.

Peeters [2007] developed this idea, again allowing for tempo variation and matching of envelope

patterns against templates. By contrast, the current system assumes a constant tempo which allows

a much simpler formulation and realization, at the cost of a more limited scope of application.

The rest of this paper is organized as follows: In section 2, we introduce the key idea of

formulating beat tracking as the optimization of a recursively-calculable cost function. Section

2

3 describes our implementation, including details of how we derived our onset strength function

from the music audio waveform. Section 4 describes the results of applying this system to MIREX-

06 beat tracking evaluation data, for which human tapping data was available, and in section 5 we

discuss various aspects of this system, including issues of varying tempo, and deciding whether or

not any beat is present.

2 The Dynamic Programming Formulation of Beat Tracking

Let us start by assuming that we have a constant target tempo which is given in advance. The goal

of a beat tracker is to generate a sequence of beat times that correspond both to perceived onsets

in the audio signal at the same time as constituting a regular, rhythmic pattern in themselves. We

can define a single objective function that combines both of these goals:

C({ti}) =
N∑

i=1

O(ti) + α
N∑

i=2

F (ti − ti−1, τp) (1)

where {ti} is the sequence of N beat instants found by the tracker, O(t) is an “onset strength

envelope” derived from the audio, which is large at times that would make good choices for beats

based on the local acoustic properties, α is a weighting to balance the importance of the two terms,

and F (∆t, τp) is a function that measures the consistency between an inter-beat interval ∆t and

the ideal beat spacing τp defined by the target tempo. For instance, we use a simple squared-error

function applied to the log-ratio of actual and ideal time spacing i.e.

F (∆t, τ) = −
(

log
∆t

τ

)2

(2)

which takes a maximum value of 0 when ∆t = τ , becomes increasingly negative for larger devi-

ations, and is symmetric on a log-time axis so that F (kτ, τ) = F (τ/k, τ). In what follows, we

assume that time has been quantized on some suitable grid; our system used a 4 ms time step (i.e.

3

250 Hz sampling rate).

The key property of the objective function is that the best-scoring time sequence can be assem-

bled recursively i.e. to calculate the best possible score C∗(t) of all sequences that end at time t,

we define the recursive relation:

C∗(t) = O(t) + max
τ=0...t

{αF (t− τ, τp) + C∗(τ)} (3)

This equation is based on the observation that the best score for time t is the local onset strength,

plus the the best score to the preceding beat time τ that maximizes the sum of that best score and

the transition cost from that time. While calculating C∗, we also record the actual preceding beat

time that gave the best score:

P ∗(t) = arg max
τ=0...t

{αF (t− τ, τp) + C∗(τ)} (4)

In practice it is necessary only to search a limited range of τ since the rapidly-growing penalty

term F will make it unlikely that the best predecessor time lies far from t − τp; we search τ =

t− 2τp . . . t− τp/2.

To find the set of beat times that optimize the objective function for a given onset envelope,

we start by calculating C∗ and P ∗ for every time starting from zero. Once this is complete, we

look for the largest value of C∗ (which will typically be within τp of the end of the time range);

this forms the final beat instant tN – where N , the total number of beats, is still unknown at

this point. We then ‘backtrace’ via P ∗, finding the preceding beat time tN−1 = P ∗(tN), and

progressively working backwards until we reach the beginning of the signal; this gives us the entire

optimal beat sequence {ti}∗. Thanks to dynamic programming, we have effectively searched the

entire exponentially-sized set of all possible time sequences in a linear-time operation. This was

possible because, if a best-scoring beat sequence includes a time ti, the beat instants chosen after

ti will not influence the choice (or score contribution) of beat times prior to ti, so the entire best-

4

scoring sequence up to time ti can be calculated and fixed at time ti without having to consider any

future events. By contrast, a cost function where events subsequent to ti could influence the cost

contribution of earlier events would not be amenable to this optimization.

To underline its simplicity, figure 1 shows the complete working Matlab code for core dynamic

programming search, taking an onset strength envelope and target tempo period as input, and

finding the set of optimal beat times. The two loops (forward calculation and backtrace) consist of

only ten lines of code.

3 The Beat Tracking System

The dynamic programming search for the globally-optimal beat sequence is the heart and the main

novel contribution of our system; in this section, we present the other pieces required for the

complete beat-tracking system. These comprise two parts: the front-end processing to convert the

input audio into the onset strength envelope, O(t), and the global tempo estimation which provides

the target inter-beat interval, τp.

3.1 Onset Strength Envelope

Similar to many other onset models (e.g. Goto and Muraoka [1994], Klapuri [1999], Jehan [2005])

we calculate the onset envelope from a crude perceptual model. First the input sound is resampled

to 8 kHz, then we calculate the short-term Fourier transform (STFT) magnitude (spectrogram) us-

ing 32 ms windows and 4 ms advance between frames. This is then converted to an approximate

auditory representation by mapping to 40 Mel bands via a weighted summing of the spectrogram

values [Ellis, 2005]. We use an auditory frequency scale in an effort to balance the perceptual

importance of each frequency band. The Mel spectrogram is converted to dB, and the first-order

difference along time is calculated in each band. Negative values are set to zero (half-wave rec-

tification), then the remaining, positive differences are summed across all frequency bands. This

signal is passed through a high-pass filter with a cutoff around 0.4 Hz to make it locally zero-

5

function beats = beatsimple(localscore, period, alpha)
% beats = beatsimple(localscore, period, alpha)
% Core of the DP!based beat tracker
% <localscore> is the onset strength envelope
% <period> is the target tempo period (in samples)
% <alpha> is weight applied to transition cost
% <beats> returns the chosen beat sample times.
% 2007!06!19 Dan Ellis dpwe@ee.columbia.edu

% backlink(time) is best predecessor for this point
% cumscore(time) is total cumulated score to this point
backlink = !ones(1,length(localscore));
cumscore = localscore;

% Search range for previous beat
prange = round(!2*period):!round(period/2);
% Log!gaussian window over that range
txcost = (!alpha*abs((log(prange/!period)).^2));

fo r i = max(!prange + 1):length(localscore)

 timerange = i + prange;

 % Search over all possible predecessors
 % and apply transition weighting
 scorecands = txcost + cumscore(timerange);
 % Find best predecessor beat
 [vv,xx] = max(scorecands);
 % Add on local score
 cumscore(i) = vv + localscore(i);
 % Store backtrace
 backlink(i) = timerange(xx);

end

% Start backtrace from best cumulated score
[vv,beats] = max(cumscore);
% .. then find all its predecessors
while backlink(beats(1)) > 0
 beats = [backlink(beats(1)),beats];
end

 Figure 1: Matlab code for the core dynamic programming search, taking the onset strength en-

velope and the target tempo period as inputs, and returning the indices of the optimal set of beat
times. The full system also requires code to calculate the onset strength envelope and the initial
target tempo, which is not shown.

6

0

2

4

0

20

40

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

20

-40

-20

0

20

fr
eq

 /
kH

z
M

el
 b

an
d

Linear-frequency Spectrogram

Mel-frequency Spectrogram

Onset strength envelope

time / sec

level / dB

Figure 2: Comparison of conventional spectrogram (top pane, 32 ms window), Mel-spectrogram
(middle pane), and the onset strength envelope calculated as described in the text. Vertical bars
indicate beat times as found by the complete system.

mean, and smoothed by convolving with a Gaussian envelope about 20 ms wide. This gives a one-

dimensional onset strength envelope as a function of time that responds to proportional increase in

energy summed across approximately auditory frequency bands. Figure 2 shows an example of the

STFT spectrogram, Mel spectrogram, and onset strength envelope for a brief example of singing

plus guitar (‘train2’ from the MIREX-06 beat tracking data [McKinney and Moelants, 2006a]).

Peaks in the onset envelope evidently correspond to times when there are significant energy onsets

across multiple bands in the signal.

Since the balance between the two terms in the objective function of eqn. 1 depends on the

overall scale of the onset function, which itself may depend on the instrumentation or other aspects

of the signal spectrum, we normalize the onset envelope for each musical excerpt by dividing by

its standard deviation.

7

3.2 Global Tempo Estimate

The dynamic programming formulation of section 2 was dependent on prior knowledge of a target

tempo (i.e. the ideal inter-beat interval τp); here, we describe how this is estimated. Given the onset

strength envelope O(t) of the previous section, autocorrelation will reveal any regular, periodic

structure i.e. we take the inner product of the envelope with delayed versions of itself, and for

delays that succeed in lining up many of the peaks, a large correlation occurs. For a periodic

signal, there will also be large correlations at any integer multiples of the basic period (as the

peaks line up with the peaks that occur two or more beats later), and it can be difficult to choose

a single best peak among many correlation peaks of comparable magnitude. However, human

tempo perception (as might be examined by asking subjects to tap along in time to a piece of

music [McKinney and Moelants, 2006b]) is known to have a bias towards 120 BPM. We apply a

perceptual weighting window to the raw autocorrelation to downweight periodicity peaks far from

this bias, then interpret the scaled peaks as indicative of the likelihood of a human choosing that

period as the underlying tempo. Specifically, our tempo period strength is given by:

TPS(τ) = W (τ)
∑

t

O(t)O(t− τ) (5)

where W (τ) is a Gaussian weighting function on a log-time axis:

W (τ) = exp

{
−1

2

(
log2τ/τ0

στ

)2
}

(6)

where τ0 is the center of the tempo period bias, and στ controls the width of the weighting curve

(in octaves, thanks to the log2). The primary tempo period estimate is then simply the τ for which

TPS(τ) is largest.

To set τ0 and στ , we used the MIREX-06 Beat Tracking training data, which consists of the

actual tapping instants from 40 subjects asked to tap along with a number of 30 s musical excerpts

[McKinney and Moelants, 2006a, Moelants and McKinney, 2004]. Data were collected for 160

8

excerpts, of which 20 were released as training data for the competition. Excerpts were chosen

to give a broad variety of tempos, instrumentation, styles, and meters [McKinney and Moelants,

2005]. In each of these examples, the subject tapping data could be clustered into two groups, cor-

responding to slower and faster levels of the metrical hierarchy of the music, which were separated

by a ratio of 2 or 3 (as a result of the particular rhythmic structure of the particular piece). The

proportions of subjects opting for faster or slower tempos varied with each example, but it is no-

table that all examples resulted in two distinct response patterns. To account for this phenomenon,

we constructed our tempo estimate to identify a secondary tempo period estimate whose value is

chosen from among (0.33, 0.5, 2, 3)× the primary period estimate, choosing the period that had

the largest TPS, and simply using the ratio of the TPS values as the relative weights (likelihoods)

of each tempo.

The values returned by this model were then compared against ground truth derived from the

subjective tapping data, and τ0 and στ adjusted to maximize agreement between model and data.

“Agreement” was based only on the two tempos reported and not the relative weights estimated by

the system, although the partial score for matching only one of the two ground-truth tempos was

in proportion to the number of listeners who chose that tempo. The best agreement of 77% was

achieved by a τ0 of 0.5 s (corresponding to 120 BPM, as expected from many results in rhythm

perception), and a στ of 1.4 octaves. Figure 3 shows the raw autocorrelation and its windowed

version, TPS, for the example of fig 2, with the primary and secondary tempos marked.

Subsequent to the evaluation, examination of errors made by this approach led to a slight

modification in which, rather than simply choosing the largest peak in the base TPS, two further

functions are calculated by resampling TPS to one-half and one-third, respectively, of its original

length, adding this to the original TPS, then choosing the largest peak across both these new

9

8 8.5 9 9.5 10 10.5 11 11.5 12
-2

0

2

4

0

200

400

0 0.5 1 1.5 2 2.5 3 3.5 4
lag / s

time / s

-100

0

100

200

Onset Strength Envelope (part)

Raw Autocorrelation

Windowed Autocorrelation

Primary Tempo Period

Secondary Tempo Period

Figure 3: Tempo calculation. Top: Onset strength envelope excerpt from around 10 s into the
excerpt. Middle: Raw autocorrelation. Bottom: autocorrelation with perceptual weighting window
applied to give the TPS function. The two chosen tempos are marked.

sequences i.e. treating τ as a discrete, integer time index,

TPS2(τ) = TPS(τ) + 0.5TPS(2τ) + 0.25TPS(2τ − 1) + 0.25TPS(2τ + 1) (7)

TPS3(τ) = TPS(τ) + 0.33TPS(3τ) + 0.33TPS(3τ − 1) + 0.33TPS(3τ + 1) (8)

Whichever sequence contains the larger value determines whether the tempo is considered duple

or triple, respectively, and the location of the largest value is treated as the faster target tempo, with

one-half or one-third of that tempo, respectively, as the adjacent metrical level. Relative weights

of the two levels are again taken from the relative peak heights at the two period estimates in the

original TPS. This approach finds the tempo that maximizes the sum of the TPS values at both

metrical levels, and performs slightly better on the development data, scoring 84% agreement. In

this case, the optimal τ0 was the same, but the best results required a smaller στ of 0.9 octaves.

10

4 Experimental Results

4.1 Tempo estimation

The tempo estimation system was evaluated within the MIREX-06 Tempo Extraction contest,

where it placed among the least accurate of the 7 algorithms compared. More details and anal-

ysis are provided in McKinney et al. [2007].

For an alternative comparison, we also ran the tempo estimation system on part of the data used

in the 2004 Audio Description Contest for Tempo [Gouyon et al., 2006]. Specifically, we used the

465 “song excerpt” examples which have been made publicly available. The attraction of using

this data is that it is completely separate from the tuning procedure used to set the tempo system

parameters. In 2004, twelve tempo extraction algorithms were evaluated on this data against a

single ground truth per excerpt derived from beat times marked by an expert. The algorithm

accuracy ranged from 17% to 58.5% exact agreement with the expert reference tempo (“accuracy

1”), which improved to 41% to 91.2% when a tempo at a factor of 2 or 3 above or below the

reference tempo was also accepted (“accuracy 2”).

Running the original tempo extraction algorithm of section 3.2 (global maximum of TPS)

scored 35.7% and 74.4% for accuracies 1 and 2 respectively, which would have placed it between

5th and 6th place in the 2004 evaluation for accuracy 1, and between 3rd and 4th for accuracy 2.

The modified tempo algorithm (taking the maximum of TPS2 or TPS3) improves performance

to 45.8% and 80.6%, which puts it between 1st and 2nd, and 2nd and 3rd, for accuracy 1 and 2

respectively. It is still significantly inferior to the best algorithm in that evaluation, which, as in

2006, was from Klapuri.

4.2 Beat tracking

The complete beat tracking system was evaluated against the same data used to tune the tempo

estimation system, namely the 20, 30 s excerpts of the MIREX-06 Beat Tracking training data,

11

and the 40 ground-truth subject beat-tapping records collected for each excerpt (a total of 38,880

ground-truth beats, or an average of 48.6 per 30 s excerpt). Performance was evaluated using the

metric defined for the competition, which was calculated as follows: For each human ground-

truth tapping sequence, a true tempo period is calculated as the median inter-beat-interval. Then

algorithmically-generated beat times are compared to the ground truth sequence and deemed to

match if they fall within a time ‘collar’ around a ground-truth beat. The collar width was taken

as 20% of the true tempo period. The score relative to that ground-truth sequence is the ratio of

the number matching beats to the greater of total number of algorithm beats or total number of

ground-truth beats (ignoring any beats in the first 5 s, when subjects may be ‘warming up’). The

total score is the (unweighted) average of this score across all 40 × 20 ground truth sequences. Set

as an equation, this total score is:

Stot =
1

NG

NG∑
i=1

∑LA,i

j=1 mink(|tA,i,j − tG,i,k|) < 0.2τG,i

max(LG,i, LA,i)
(9)

where NG is the number of ground-truth records used in scoring, LG,i is the number of beats

in ground truth sequence i, LA,i is the number of beats found by the algorithm relating to that

sequence, τG,i is the overall tempo of the ground-truth sequence (from the median inter-beat-

interval), tG,i,k is the time of the kth beat in the ith ground-truth sequence, and tA,i,j is the time

of the jth beat in the algorithm’s corresponding beat-time sequence. This amounts to the same

metric defined for the 2006 Audio Beat Tracking evaluation although it is expressed somewhat dif-

ferently. Results would differ only in the case where multiple ground-truth beats fell into a collar

width, in which case the competition’s cross-correlation definition would double-count algorithm-

generated beats.

Our system has three free parameters: the two values determining the tempo window (τ0 and

στ , described in the previous section), and the α of eqn. 1 which determines the balance between

the local score (sum of onset strength values at beat times) and inter-beat-interval scores. Figure

4 shows the variation of the total score with α; we note that the score does not vary much even

12

50
20 50 100 200 500 1000 2000

55

60

sc
or

e
/ %

α

Figure 4: Variation of beat tracker score against the 20 MIREX-06 Beat Tracking training examples
as a function of α, the objective function balance factor.

over almost three orders of magnitude of α. The best score over the entire test set is an accuracy

of 58.8% for α = 680. A larger α leads to a tighter adherence to the ideal tempo, since it increases

the weight of the ‘transition’ cost associated with non-ideal inter-beat intervals in comparison to

the onset waveform. A very large α essentially obliges the algorithm to find the best alignment

between the onset envelope and a rigid, isochronous sequence at the estimated global tempo. The

details of the test data set – consisting of relatively short excerpts chosen to be well described by

a single tempo – may make the ideal value of α appear larger than would be the case for a more

typical selection of music. Of course, this algorithm will not be suitable for material containing

large variations or changes in tempo, something we return to in section 5.1.

The standard deviation of the difference between system-generated and ground-truth beat times,

for the ground-truth beats that fell within 200 ms of a system truth beat, was 46.5 ms. This, how-

ever, appears to be mostly due to differences between the individual human transcribers which is

of this order.

Because of the multiplicity of metrical levels reflected in the ground-truth data (as noted in

section 3.2), it is not possible for any beat tracker to score close to 100% agreement with this

data. In order to distinguish between gross disagreements in tempo and more local errors in beat

placement, we repeated the scoring using only the 344 of 800 (43%) of ground-truth data sets in

which the system-estimated tempo matched the ground-truth tempo to within 20%. On this data,

the beat tracker agreed with 86.6% of ground-truth events.

One interesting aspect of the dynamic programming search is that it can use a target tempo

from any source, not only the estimator described above. We used the two ‘ground truth’ tempos

13

provided for each training data example (i.e. the two largest modes of the tempos derived from

the manual beat annotations) to generate two corresponding beat sequences, then scored against

the 747 (93.4%) of ground-truth sequences that agree with one or other of these. (The remaining

53 annotations had median inter-beat-intervals that agreed with neither of the two most popular

tempos for that excerpt). This achieved only 69.9% agreement. One reason that this scores worse

than 86.6% achieved on the 344 sequences that agreed with the system tempo is that the larger set

of 747 ground-truth sequences will include more at metrical levels slower than the tatum, or fastest

rate present. When the tempo tracker is obliged to find a beat sequence at multiples of a detectible

beat period, it runs the risk of choosing “offbeats” in-between the ground-truth beats, and getting

none of the beats correct. When left to choose its own tempo, it is more likely to choose the faster

tatum, allowing a score of around 50% correct for a duple time against those same ground-truth

sequences.

5 Discussion and Conclusions

Having examined the performance of the algorithm, we now comment on a few issues raised by

this approach.

5.1 Non-constant tempos

We have noted the main limitation of this algorithm is its dependence on a single, predefined ideal

tempo. While a small α can allow the search to find beat sequences that locally deviate from

this ideal, there is no notion of tracking a slowly-varying tempo (e.g. a performance that gets

progressive faster). Abrupt changes in tempo are also not accommodated.

To examine the sensitivity of the system to the target tempo, we experimented with tracking

specific single-tempo excerpts while systematically varying the target tempo around the “true”

target tempo. We expect the ability to track the true tempo to depend on the strength of the true beat

onsets in the audio, thus we compare two excerpts, one a choral piece with relatively weak onsets,

14

100

70

50
40

30

150

200

m
ea

n
ou

tp
ut

 B
P

M

bonus1 (Choral): BPM target vs. BPM out

0

0.5

1

Beat accuracy

100
0

0.1

0.2

σ/μ of inter-beat-intervals

target BPM

α = 400
α = 100

100

70

150

200

300

400

m
ea

n
ou

tp
ut

 B
P

M

ac
cu

ra
cy

ac
cu

ra
cy

σ
/μ

σ
/μ

bonus6 (Jazz): BPM target vs. BPM out

α = 400
α = 100

0

0.5

1

Beat accuracy

10070705030 40 200150 200150 300 400
0

0.1

0.2

target BPM

σ/μ of inter-beat-intervals

Figure 5: Effect of deviations from target BPM: For examples of choral music (‘bonus1’, left
column), and jazz including percussion (‘bonus6’, right column), the target tempo input to the
beat tracker is varied systematically from about 1/3× to 3× the main value returned by the tempo
estimation (78.5 and 182 BPM, respectively). The shaded background region shows ±10% around
the main value, showing that the beat tracker is able to hold on to the correct beats despite tempo
deviations of this order. Top row shows the output tempo (mean of inter-beat-intervals); second
row shows the beat accuracy when scored against the default beat tracker output; bottom row shows
the standard deviation of the inter-beat-intervals as a proportion of the mean value, showing that
beat tracks are more even when locked to the correct tempo (for these examples). In each case, the
solid lines show the results with the default value of α = 400, and the dotted lines show the results
when α = 100, meaning that less weight is placed on consistency with the target tempo.

and one a jazz excerpt where the beats were well defined by the percussion section (respectively

“bonus1” and “bonus6” from the 2006 MIREX Beat Tracking development data [McKinney and

Moelants, 2006a]). FIgure 5 shows the results of tracking these two excerpts.

In order to accommodate slowly-varying tempos, the system could be modified to update τp

dynamically during the progressive calculation of equations 3 and 4. For instance, τp could be set

to a weighted average of the recent actual best inter-beat-intervals found in the max search. Note,

however, that it is not until the final traceback that the beat times to be chosen can be distinguished

15

from the gaps inbetween those beats, so the local average may not behave quite as expected. It

would likely be necessary to track the current τp for each individual point in the backtrace history,

leading to a slightly more complex process for choosing the best predecessors. When τp is not

constant, the optimality guarantees of dynamic programming no longer hold. However, in situa-

tions of slowly-changing tempo (i.e. the natural drift of human performance), it may well perform

successfully.

The second problem mentioned above, of abrupt changes in tempo, would involve a more

radical modification. However, in principle the dynamic programming best path could include

searching across several different τp values, with an appropriate cost penalty to discourage fre-

quent shifts between different tempos. A simple approach would be to consider a large number

of different tempos in parallel i.e. to add a second dimension to the overall score function to find

the best sequence ending at time t and with a particular tempo τpi
. This, however, would be con-

siderably more computationally expensive, and might have problems with switching tempos too

readily. Another approach would be to regularly re-estimate dominant tempos using local enve-

lope autocorrelation, then include a few of the top local tempo candidates (peaks in the envelope

autocorrelation) as alternatives for the dynamic programming search. In all this, the key idea is

to define a cost function that can be recursively optimized, to allow the same kind of search as in

the simple case we have presented. At some point, the consideration of multiple different tempos

becomes equivalent to the kind of explicit multiple-hypothesis beat tracking system typified by

Dixon [2001].

5.2 Finding the end

The dynamic programming search is able to find an optimal spacing of beats even in intervals

where there is no acoustic evidence of any beats. This “filling in” emerges naturally from the

backtrace and is desirable in the case where the music contains silence or long sustained notes.

However, it applies equally well to any silent (or non-rhythmic) periods at the start or end of a

16

0 50 100 150 200 time / s
0

100

200

300

400

500

0

20

40

60

10

20

30

40
Let It Be - Mel Spectrogram

Onset strength envelope

Disounted Best Cost

fr
eq

 /
M

el
 b

an
ds

Figure 6: Comparison of Mel spectrogram, onset strength envelope, and discounted best cost
function for the entire 3 min 50 s of “Let it Be” by the Beatles. The discounted best cost is simply
the C∗ of eqn. 3 after subtracting a straight line that connects origin and final value.

recording, when in fact it would be more appropriate to delay the first reported beat until some

rhythmic energy has been observed, and to report no beats after the final prominent peak in the

onset envelope.

Alternatively, some insight can be gained from inspecting the best score function, C∗(t). In

general this is steadily growing throughout the piece, but by plotting its difference from the straight

line connecting the origin and the final value, we obtain a graph that shows how different parts of

the piece contributed to a more or less rapid growth in the total score. Setting a simple threshold

on this curve can be used to delete regions outside of the first and last viable beats. Figure 6 shows

an example for the Beatles track “Let It Be”. Note the relatively strong score growth during the

instrumental region around t = 160 . . . 180 s. In this region, the presence of a strong percussion

track and the absence of vocals that would otherwise dominate much of the spectrum leads to

particularly large values for the onset envelope, and hence large increases in the best score.

17

5.3 Conclusion

Despite its limitations, the simplicity and efficiency of the dynamic programming approach to

beat tracking makes it an attractive default choice for general music applications. We have used

this algorithm successfully as the basis of the beat-synchronous chroma features which underly

our cover song detection system [Ellis and Poliner, 2007] which had the best performance by a

wide margin in the MIREX-06 Cover Song Detection evaluation. In this and other related music

retrieval applications we have run the beat tracker over very many pop music tracks, including

the 8764 tracks of the uspop2002 database [Ellis et al., 2003], and we have found it gener-

ally satisfactory – for this material, in the examples we have inspected, the tracked beats are very

often at a reasonable tempo and in reasonable places. Compared to the other, state-of-the-art

beat tracking systems evaluated in the MIREX-06 Audio Beat Tracking evaluation (discussed in

McKinney et al. [2007]), we see this algorithm as far simpler, as evidenced by its simple ob-

jective function (eqn. 1) and compact code (fig. 1) while sacrificing little or nothing in accu-

racy. Even with a pure-Matlab implementation, its running time was faster than all but one of

the C++ and Java-based competitors, and its performance had no statistically-significant differ-

ence from the best system. The Matlab code for the entire system is available for download at

http://labrosa.ee.columbia.edu/projects/coversongs/ , which also links to a Java

implementation as part of the the MEAPsoft package [Weiss et al., 2006].

Acknowledgments

This work was supported by the Columbia Academic Quality Fund, and by the National Science

Foundation (NSF) under Grant No. IIS-0238301. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the author and do not necessarily reflect

the views of the NSF.

18

References

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

P. Desain and H. Honing. Computational models of beat induction: The rule-based approach.

Journal of New Music Resarch, 28(1):29–42, 1999.

S. Dixon. Automatic extraction of tempo and beat from expressive performances. Journal of New

Music Research, 30(1):39–58, 2001.

S. Dixon, W. Goebl, and E. Cambouropoulos. Perceptual smoothness of tempo in expressively

performed music. Journal of New Music Resarch, 23(3):195–214, 2006. URL http://www.

ofai.at/∼werner.goebl/papers/Dixon-Goebl-Cambouropoulos MusPerc2006.

pdf.

D. P. W. Ellis. PLP and Rasta and MFCC and inversion in Matlab. Web resource, retrieved July

11, 2007, from http://labrosa.ee.columbia.edu/matlab/rastamat/, 2005. URL

http://labrosa.ee.columbia.edu/matlab/rastamat/.

D. P. W. Ellis and G. Poliner. Identifying cover songs with chroma features and dynamic pro-

gramming beat tracking. In Proceedings of the IEEE International Conference on Acous-

tics, Speech, and Signal Processing, pages IV–1429–1432, Hawai’i, 2007. URL http:

//www.ee.columbia.edu/∼dpwe/pubs/EllisP07-coversongs.pdf.

D. P. W. Ellis, A. Berenzweig, and B. Whitman. The “uspop2002” pop music data

set. Web resource, retrieved July 11, 2007, from http://labrosa.ee.columbia.edu/

projects/musicsim/uspop2002.html, 2003. URL http://labrosa.ee.columbia.

edu/projects/musicsim/uspop2002.html.

M. Goto and Y. Muraoka. A beat tracking system for acoustic signals of music. In Proceedings

of ACM Multimedia, pages 365–372, San Francisco, CA, 1994. URL http://staff.aist.

go.jp/m.goto/PAPER/ACM94.300dpi.ps.

19

F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and P. Cano. An experimental

comparison of audio tempo induction algorithms. IEEE Transactions on Speech and Audio

Processing, 14(5):1832–1844, 2006. doi: 10.1109/TSA.2005.858509. URL http://www.

iua.upf.es/mtg/ismir2004/contest/tempoContest/.

Tristan Jehan. Creating Music by Listening. PhD thesis, MIT Media Lab, Cambridge, MA, 2005.

URL http://web.media.mit.edu/∼tristan/phd/.

A. Klapuri. Sound onset detection by applying psychoacoustic knowledge. In Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 3089–3092,

Phoenix, AZ, 1999.

J. Laroche. Efficient tempo and beat tracking in audio recordings. Journal of the Audio Engineering

Society, 51(4):226–233, Apr 2003.

M. F. McKinney and D. Moelants. Audio Tempo Extraction from MIREX 2005. Web re-

source, retrieved July 11, 2007, from http://www.music-ir.org/mirex2005/index.

php/Audio Tempo Extraction, 2005. URL http://www.music-ir.org/mirex2005/

index.php/Audio Tempo Extraction.

M. F. McKinney and D. Moelants. Audio Beat Tracking from MIREX 2006. Web resource, re-

trieved July 11, 2007, from http://www.music-ir.org/mirex2006/index.php/Audio

Beat Tracking, 2006a. URL http://www.music-ir.org/mirex2006/index.php/

Audio Beat Tracking.

M. F. McKinney, D. Moelants, M. Davies, and A. Klapuri. Evaluation of audio beat tracking and

music tempo extraction algorithms. Journal of New Music Resarch, this issue, 2007.

Martin F. McKinney and Dirk Moelants. Ambiguity in tempo perception: What draws listeners to

different metrical levels? Music Perception, 24(2):155–166, 2006b. doi: 10.1525/mp.2006.24.

2.155. URL http://caliber.ucpress.net/doi/abs/10.1525/mp.2006.24.2.155.

20

D. Moelants and M. F. McKinney. Tempo perception and musical content: What makes a piece

fast, slow, or temporally ambiguous? In S. D. Lipscomb, R. Ashley, R. O. Gjerdingen, and

P. Webster, editors, Proceedings of the 8th International Conference on Music Perception and

Cognition, pages 558–562, Evanston, IL, 2004.

G. Peeters. Template-based estimation of time-varying tempo. EURASIP Journal on Advances in

Signal Processing, 2007(Article ID 67215):14 pages, 2007. URL 10.1155/2007/67215.

R. Weiss, D. Repetto, M. Mandel, D. P. W. Ellis, V. Adan, and J. Snyder. Meapsoft: A program

for rearranging music audio recordings. Web resource, retrieved July 11, 2007, from http:

//www.meapsoft.org/, 2006. URL http://labrosa.ee.columbia.edu/meapsoft/.

21

