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ABSTRACT

In the development of speech recognition algorithms, it is impor-
tant to know whether any apparent difference in performance of al-
gorithms is statistically significant, yet this issue is almost always
overlooked. We present two simple tests for deciding whether the
difference in error-rates between two algorithms tested on the same
data set is statistically significant. The first (McNemar’s test) re-
quires the errors made by an algorithm to be independent events
and is most appropriate for isolated word algorithms. The second
(a matched-pairs test) can be used even when errors are not inde-
pendent events and is more appropriate for connected speech.

1. INTRODUCTION

The speech recognition literature currently abounds with descrip-
tions of novel or improved algorithms for speech recognition. It is
common practice for researchers to test two or more algorithms to-
gether and then to make claims for their relative efficacy on the ba-
sis of the test results. However, these claims are seldom backed by
evidence that any difference in performance is statistically signifi-
cant; indeed, most papers show an almost complete lack of aware-
ness of the importance of comparing results of experiments in a
way that takes account of variability and uncertainty in a prin-
cipled manner. In this paper, we present some statistical ideas
and techniques that will make it possible to perform such compar-
isons on algorithms (or systems) that recognise isolated words and
connected or continuous speech. We hope to thereby encourage
researchers who are reporting empirical results to use statistical
measures in summarizing their findings and drawing conclusions.

We concentrate on methods in which the algorithms are tested
on the same data set. Algorithms are often compared by testing
them with the same data because by forcing the test items to be the
same, the results then reflect differences between the algorithms
rather than any accidental differences in the difficulty of the test
items in independent data sets. However, the constraint of testing
different algorithms on the same data set calls for a more sophisti-
cated statistical approach than that required if each algorithm were
tested on an independent set.
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1.1. Notation

We shall use capital letters throughout to denote random variables
(RVs) and lowercase letters for scalars or ob- served values of ran-
dom variables. An exception to the above rule is an estimate of a
parameter which, although it is an RV, we denote by a cicumflexed
lower-case letter.

2. A SIMPLE APPROACH

Suppose there are two algorithms, A1 and A2, which are presented
with a sequence of labelled utterances
{ui} = u1,u2, . . . ,un for recognition. By ‘recognition’, we mean
that the algorithms make a decision about the label of each {ui}
which is either correct or incorrect. We suppose that the {ui} are
representative of some larger population of utterance sequences.
We also assume that the {ui} are isolated utterances of e.g. sylla-
bles, words or phrases. Now suppose that the true (but unknown)
error-rates of A1 and A2 are respectively p1 and p2. Our task is
to decide whether there is enough evidence to conclude that either
p1 > p2, p1 = p2 or p1 < p2.

Define the random variable X j
i as follows:

X j
i = 0 when A j labels ui correctly

= 1 when A j labels ui incorrectly

It is reasonable to assume that S j = ∑
n
i=1 X j

i follows a binomial
distribution B(n, p j) as long as the errors are independent events.
The maximum likelihood (ML) estimate of p j is p̂ j:

p̂ j =
S j

n
(1)

The variance of p̂ j is σ2
j :

σ
2
j =

p j(1− p j)
n

(2)

We would like to test the null hypothesis:

H0 : p1 = p2 = p (3)

which is equivalent to the hypothesis that d = p1− p2 = 0. Under
H0, the ML estimate of d is d̂ = p̂1− p̂2, with associated variance
σ2

d :
σ

2
d = Var(p̂1− p̂2). (4)



If we can assume that p̂1 and p̂2 are independent, equation 4 can
be written as

σ
2
d = Var(p̂1)+Var(p̂2) = σ

2
1 +σ

2
2. (5)

and σ2
d can be estimated by

σ̂
2
d =

2p̂(1− p̂)
n

if H0 is true, (6)

where the ML estimate of p is p̂ = (p̂1 + p̂2)/2. Then if n is large
enough and H0 is true, the distribution of the statistic

W =
(p̂1− p̂2)√

2p̂(1−p̂)
n

(7)

tends to a Normal distribution with zero mean and unit variance,
N (0,1). To test the null hypothesis, we compute P = 2Pr(Z≥ |w|)
where Z is a random variable with distribution N (0,1) and w is
the realized value of W . If it is found that P < α for a chosen
significance level α, H0 is rejected (typical values of α are 0.05,
0.01 or 0.001). Notice the factor of 2 in the computation of P; W
can lie on either side of the mean (zero) depending on the values
of p̂1 and p̂2, and we include both possibilities (a two-tailed test).

2.1. An example

Let us take an example to illustrate the above procedure. In a re-
cent test, A1 and A2 made 72 and 62 errors respectively on a test-set
of 1400 utterances. Hence n = 1400, p̂1 = 0.0514, p̂2 = 0.0443
and substituting into equation 7 gives w = 0.8853. Using z = |w|=
0.8853 in standard tables of the unit Normal distribution, we obtain
P′ =

R z
−∞

φ(t)dt = 0.812, where φ(t) is the density corresponding
to N (0,1). However, we require P = 2

R
∞

z φ(t)dt = 2(1−P′), giv-
ing a P-value P = 0.376. The conclusion is that H0 cannot be
rejected and the difference in performance might well be due to
chance effects.

2.2. Comments on the validity of the simple approach

The above analysis is correct if the assumption that p̂1 and p̂2 are
independent is valid. Unfortunately, this cannot be true when A1
and A2 are tested on the same data-set, because if the algorithms
are similar, they may have many errors in common. We might
approach this problem by attempting to estimate the correlation of
p̂1 and p̂2. The difficulty with this idea is that we have only one
data-set and any partioning of this data will increase the estimates
of the variance of p̂1 and p̂2. A more direct and elegant solution is
offered by McNemar’s test.

3. MCNEMAR’S TEST

The joint performance of the two algorithms can be summarised in
a 2 x 2 table as follows:

A2
Correct Incorrect

A1
Correct N00 N01

Incorrect N10 N11

where:

N00 = No of utterances which A1 classifies correctly,
A2 classifies correctly

N01 = No of utterances which A1 classifies correctly,
A2 classifies incorrectly

N10 = No of utterances which A1 classifies incorrectly,
A2 classifies correctly

N11 = No of utterances which A1 classifies incorrectly,
A2 classifies incorrectly

Note that n = N00 + N01 + N10 + N11. By analogy with the Ni j’s,
define qi j’s:
q00 = Pr(A1 classifies ui correctly, A2 classifies ui incorrectly)
etc. Hence E(Ni j) = nqi j. Now observe that p1 = q10 + q11 and
p2 = q01 + q11. Therefore H0 is equivalent to H1

0 : q01 = q10.
Defining q = q10/(q01 +q10) , a further equivalent null hypothesis
is H2

0 : q = 1
2 .

The parameter q represents the conditional probability that A1
will make an error on an utterance given that only one of the two
algorithms makes an error. The null hypothesis q = 1

2 represents
the assertion that, given that only one of the algorithms makes an
error, it is equally likely to be either one. It is now plausible that
to test H0, it should only be necessary to examine the utterances
on which only one of the algorithms made an error. No informa-
tion about the relative performance of A1 and A2 is available from
utterances on which they are both right or both wrong.

If we condition on the number of utterances K = N10 + N01
on which only one algorithm made an error, then for the observed
K = k, N10 has a B(k,q) distribution. Furthermore, under H0, N10
has a B(k, 1

2 ) distribution. The null hypothesis is thus tested by
applying a two-tailed test (as in section 2) to the observation of a
random variable M drawn from a B(k, 1

2 ) distribution:

P = 2Pr(n10 ≤M ≤ k) when n10 > k/2 (8)
= 2Pr(0≤M ≤ n10) when n10 < k/2 (9)
= 1.0 when n10 = k/2 (10)

The probabilities can be computed directly as follows:

P = 2
k

∑
m=n10

(
k
m

)(
1
2

)k
when n10 > k/2 (11)

= 2
n10

∑
m=0

(
k
m

)(
1
2

)k
when n10 < k/2 (12)

or alternatively, tables of the Binomial distribution may be used.
As in section 2, H0 is rejected when P is less than some signifi-
cance level α. If k is large enough (k > 50) and n10 is not too close
to k or 0, a normal approximation to the exact Binomial probability
may be used. Under H0 and conditional on K = k, E(N10) = k/2
and Var(N10) = k/4. Then let

W =
|N10− k

2 |−
1
2√

k
4

(13)

which should be approximately N (0,1) under H0. Compute the
P-value P = 2Pr(Z ≥ w) (where Z is a random variable with dis-
tribution N (0,1) and w is the realized value of W ), and reject H0
if P < α , where α is the chosen significance level.



The − 1
2 in the numerator of equation 13 is a continuity cor-

rection factor [1]. This latter form of the test is equivalent to the
χ2 test of McNemar [4].

3.1. Examples using the same test set

Let us now re-examine the data tested in section 2.1, where the
errors were assumed to be independent. The distribution of the
errors was:

A2
Correct Incorrect

A1
Correct 1325 3

Incorrect 13 59

Hence k = 16, n10 = 13 and P is computed directly from equation
11 as 0.0213 (using the Normal approximation gives P = 0.0244).
The observed difference would arise by chance on about 2% of
occasions (c.f. 37.6% of occasions if it is assumed that p̂1 and p̂2
are independent), so there is evidence of a genuine difference.

In this case, the application of McNemar’s Test increases our
confidence that we are observing a genuine difference in the per-
formance of two algorithms. It is instructive to compare different
distributions of incorrectly classified utterances and their associ-
ated values of P (exact P-values are given, with P-value under
Normal approximation in brackets):

A2

A1
1266 62

72 0

P = 0.437 (0.437)

A2

A1
1328 0

10 62

P = 0.0020 (0.0044)

3.2. Non-independent errors

McNemar’s test is applicable when the errors made by an algo-
rithm are independent, a condition which is certainly met in an
isolated word algorithm which does not make use of any context.
If the algorithm requires isolated word input but uses any sort of
language model, the errors will no longer be independent. Clearly,
useful information on the performance of the acoustic modelling
is obtained by disabling the language-model and applying Mc-
Nemar’s test to the individual words. Some information on the
combined performance of acoustic modelling and language model
could be obtained by supplying the algorithm with enough ‘left
context’ to ensure that the probability of error on a particular word
is independent of any earlier errors. For example, before the per-
formance on word k in a sentence is recorded, supply the correct
labels of words k− l,k− l + 1, . . . ,k−1 to the algorithm, where l
is large enough for the effect of errors on any previous words to be
neutralised. The errors are now independent and the effect of the
language model is included. Given that users will probably want
to do immediate error correction of each misrecognised word in
systems of this sort, this is a reasonable strategy.

Current algorithms for recognising connected speech con-
sider the whole spoken phrase before deciding upon the
most likely ‘explanation’ (labelling) of the acoustic in-
put. The errors are therefore highly inter-dependent and
it would be wrong to attempt to compare performance
on segments of a phrase which were in error. However, if each

spoken phrase is reasonably short (i.e. a few words), it can be con-
sidered as an entity which is either recognised correctly or incor-
rectly, and McNemars test can be applied. In this case, it would be
wise to supplement the test with data on the relative frequency of
insertion, deletion and substitution errors of each algorithm to gain
more insight into the relative performance. However, this proposi-
tion is clearly unworkable for recognition of connected word sen-
tences and a different test procedure must be developed for this
case.

4. A MATCHED-PAIRS TEST

Let us suppose that we can divide the output stream from a speech
recognition algorithm into segments in such a way that the errors in
one segment are statistically independent of the errors in any other
segment. A natural candidate for such a segment is a phrase (after
which the speaker pauses) or a sentence. Let Ni

1 be the number of
errors made on the ith segment by A1 , and Ni

2 the number of errors
made by A2. Note that the type of error is unimportant, as long as
the method of counting errors is consistent for each segment and
for both algorithms; for instance, the method described in [5] could
be used. Let Zi = Ni

1−Ni
2, i = 1,2 . . . ,n , where n is the number of

segments. Let µZ be the unknown average difference in the number
of errors in a segment made by the two algorithms. We would like
to ascertain whether µZ = 0. A natural estimate of µZ would be
µ̂Z = ∑

n
i=1 Zi/n. The estimate of the variance of the Zi’s is:

σ̂
2
Z =

1
n−1

n

∑
i=1

(Zi−µZ)2 (14)

The estimate of the variance of µZ is then

σ̂
2
µ =

σ̂2
Z

n
(15)

(σ̂µ is sometimes known as the standard error of the mean). If W
is defined as:

W =
µ̂Z

(σ̂Z/
√

n)
(16)

then if n is large enough (> 50, say), W will approximately have a
Normal distribution with unit variance. The null hypothesis is H0 :
µZ = 0, so that under H0, the distribution of W also has zero mean.
H0 is tested according to the methods described in section 2.

In principle, there is no reason why we need confine ourselves
to considering phrases or sentences, as long as we can ensure that
the errors in a segment are independent of errors in any other seg-
ment. For instance, we could divide the algorithm output into seg-
ments where no errors have occurred for some minimal time pe-
riod T (‘good’ segments) and segments where errors occur (‘bad’
segments). T must be sufficently long to ensure that after a good
segment, the first error in a bad segment is independent of any
previous errors. The segments of the two algorithms could be
aligned by aligning each in turn to a transcription of the text us-
ing a Dynamic Programming method [2]. In the error analysis,



only the ‘bad’ segments need to be considered.

The test described is sometimes referred to as a matched pairs
test, because it considers the effects of two different treatments
(algorithms) on equivalent subjects (speech segments). Although
it is quite general in its applicability, it does depend on having a
sufficently large number of segments for the assumption that W is
normally distributed to be reasonable and to make possible a good
estimate of the variance of the Zi’s.

5. RESEARCH ISSUES

In this section, we discuss some possible extensions to the tests we
have described and point out some other areas of research where a
greater awareness of statistical techniques would be beneficial.

• The tests we have presented compare two algorithms, but
very often we would like to decide between more than two
algorithms or rank the algorithms. There are generaliza-
tions to McNemar’s test (e.g. Cochran’s test, [3]) which
could be used to allow comparison of more than two algo-
rithms.

• Throughout this paper, we have only used the hypothesis
testing paradigm, but it would be of considerable interest
to give a confidence interval for the difference in the two
error-rates. A confidence interval would give a range of
values for the difference which is consistent (in a certain
technical sense) with the observed data. We may reject the
null hypothesis with a very small ‘P-value’, but if the mag-
nitude of the difference in the error-rates is very small, the
improvement we have discerned may be immaterial.

• Currently, algorithms are often based on a rather small
amount of training-data and often from a single speaker.
It would be of considerable interest and value to be able to
make predictions about the change in performance if differ-
ent training-data or a different speaker were used. There is a
vast statistical literature on the design and analysis of exper-
iments that could be profitably explored to study questions
such as these.

6. CONCLUSIONS

Two tests for deciding whether the difference in performance of
two algorithms tested on the same data-set is significant have been
described. McNemar’s test is applicable in cases where errors
can be considered to be independent (e.g. isolated word recogni-
tion with no language model, recognition of short connected word
phrases), the matched-pairs test in cases where the algorithm’s out-
put can be divided into segments in which the errors are indepen-
dent of errors in other segments. There is a large statistical lit-
erature that can fruitfully be applied to problems of experimental
design and analysis in speech science.
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